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ABSTRACT 

 

The article aims to adapt the Fatemi-Socie criterion (FSC) to the frequency domain and 

compare it with the time domain approach to evaluate fatigue life. Key challenges include 

determining the critical plane position, replacing cycle counting methods with models 

estimating rainflow amplitude distributions, and defining a probability density function for strain 

amplitude and maximum normal stress. The methodology involves defining the maximum 

variance method to locate the critical plane and using moments of PSD to establish a two-

dimensional probability distribution function for shear strain and normal stress. The study 

verifies the proposed method against known solutions and applies it to random load cases to 

demonstrate its effectiveness. Results indicate a strong correlation between fatigue life 

predictions in both domains, confirming the robustness and versatility of the FSC. The findings 

suggest that the proposed frequency domain approach, utilizing statistical models, can reliably 

extend FSC applications to complex loading scenarios, offering a valuable tool for fatigue 

analysis in engineering applications. 
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INTRODUCTION 

 

In the realm of multiaxial fatigue analysis, the Fatemi-Socie criterion (FSC) stands as a well-

established and validated tool, having undergone rigorous experimental scrutiny with 

consistently favorable outcomes across a wide spectrum of materials [1]. Prior evaluations 

have predominantly involved comparisons under constant amplitude, both in proportional and 

non-proportional loading scenarios, with less frequent exploration of variable amplitude or 

random loadings [2]. Notably, there has been a gap in employing this criterion, particularly in 

the context of frequency domain and algorithms utilizing the power spectral density function. 

In this study, the authors introduce a comprehensive adaptation of the Fatemi-Socie criterion 

to the frequency domain and compare the resulting fatigue assessments with those obtained 

in the time domain. The comparative analysis extends to critical plane identification, critical 

plane amplitudes and maxima analysis, and overall fatigue life determination. The findings 

reveal a compelling similarity in fatigue life predictions between computational algorithms 

operating in both the time and frequency domains, highlighting the criterion's versatility and 

robustness. 



FATEMI-SOCIE CRITERION 

 

Fatemi and Socie have presented their critical plane based approach to multiaxial fatigue in 

1988 [3]. They assume that, for a given fatigue life 𝑁𝑓, the fatigue parameter 𝑃𝐹𝑆 expressed by 

 

𝑃𝐹𝑆 = 𝛾𝑎,𝑚𝑎𝑥 (1 + 𝑘
𝜎𝑛,𝑚𝑎𝑥

𝜎𝑦
) = 𝑐𝑜𝑛𝑠𝑡. (1) 

 

should be constant for various configurations of loading. Two main quantities are responsible 

for material fatigue: the maximum shear strain amplitude 𝛾𝑎,𝑚𝑎𝑥 and the maximum normal 

stress 𝜎𝑛,𝑚𝑎𝑥 evaluated on the plane with the maximum fatigue parameter 𝑃𝐹𝑆. This proposed 

criterion belongs to the group of strain criteria, because the maximum normal stress 𝜎𝑛,𝑚𝑎𝑥 is 

divided by the yield strength of the material 𝜎𝑦 which results in the expression in parentheses 

in Eq. (1) being dimensionless. A second issue supporting this statement is that the parameter 

𝑃𝐹𝑆 should be compared to shear strain fatigue characteristic. This statement leads also to the 

equation 

 

𝑃𝐹𝑆 =
𝜏′𝑓

𝐺
(2𝑁𝑓)

𝑏0 + 𝛾′𝑓(2𝑁𝑓)
𝑐0 (2) 

 

which is used to evaluate the fatigue life. However it is not often that the results from uniaxial 

strain controlled torsional tests, performed on tubular unnotched specimens, are available for 

the engineer. In view of this, Fatemi and Kurath, according to the deliberation presented in the 

appendix of [4], have derived the following equation 

 

𝑃𝐹𝑆 = [(1 + 𝜈𝐸)
𝜎′𝑓

𝐸
(2𝑁𝑓)

𝑏 + (1 + 𝜈𝑃)𝜀′𝑓(2𝑁𝑓)
𝑐] ⋅ [1 + 𝑘

𝜎′𝑓

2𝜎𝑦
(2𝑁𝑓)

𝑏] (3) 

 

which provides the possibility of performing fatigue life assessments using the 𝑃𝐹𝑆 parameter 

and axial strain Woehler curve, obtained with unnotched specimens under strain control. The 

FSC in its basic form, Eq. (1), is defined for a multiaxial constant amplitude load. Such a load 

is not often encountered in service load histories, where variable-amplitude or even random 

loads dominate. Hence, many scientific works have been devoted to adapting the FSC to the 

case of loads with variable amplitude and random loads. Shamsaei et al. [5] performed a 

number of fatigue tests for amplitude and block loads in which the blocks had different 

multiaxial load configurations. In this case, the resulting damage for all blocks load was 

determined in accordance with Palmgren-Miner's damage accumulation rule by summing up 

the partial damages for each load configuration, i.e. each block. Following this, damage 

summation can be performed for each pair of strain amplitude and maximum normal stress, 

provided the pairs are identified by the multiaxial rainflow procedure [6]. 

 

 

FREQUENCY DOMAIN DEFINITION 

 

The difficulty in establishing multiaxial fatigue damage criteria in the frequency domain lies in 

the reliance on statistical methods rather than deterministic values. This requires the utilisation 

of statistics base on moments of PSD and probability distribution estimation instead of fixed 

values coming from measurements or time histories of stress and strain. Moreover, referring 



to the Fatemi-Socie criterion, it can be noted that its definition is made for a constant-amplitude 

load with a phase shift. Therefore, when developing a criterion in the frequency domain, 

attention should be paid to later solutions that allowed the use of the criterion in the state of 

stress and strain with variable amplitude loading condition. Such a solution is proposed by 

Bannantine and Socie in publication [7], [8] based on critical plane concept and rainflow cycle 

counting technics. In this proposal, the main channel for counting cycles is the time history of 

shear strain determined in the critical plane, then for each shear strain cycle the normal stress 

course is searched to determine its maximum value during the time of the cycle occurrence. 

As a result, numerous pairs of strain amplitude and maximum stress values are obtained. As 

a consequence of obtaining many pairs of parameters, the final value of fatigue damage for 

one position of the critical plane is obtained by summing the damage in accordance with 

Palmgen-Miner hypothesis of damage accumulation. This is consistent with the idea of the FS 

parameter defined for constant amplitude loading where only one pair of such parameters are 

noted. Summarizing the above, it is possible to enumerate the challenges that need to be 

addressed to define this criterion in the frequency domain using only the PSD matrix of the 

strain and stress. These are: 

• determination of the critical plane position for which the maximum damage method or 

the maximum variance method can be applied, 

• replacing the cycle counting method with models for estimating the rainflow amplitude 

distribution known in the spectral method, 

• replacing the indication of the maximum stress for each strain rainflow cycle with the 

distribution of maximum stresses for the strain amplitude interval. 

 

Setting the critical plane position 

 

In the spectral method, analogous to the time domain approach, the maximum damage method 

and the maximum variation method can be employed to identify the critical plane. In the 

maximum damage method, damage is evaluated in multiple potential orientations of the critical 

plane, and the orientation yielding the highest damage parameter is selected. This method 

typically demands substantial computational effort and is therefore infrequently used in 

practical applications. Conversely, the maximum variation method seeks to maximize the 

parameter that characterizes damage, specifically the Fatemi-Socie parameter. To apply the 

maximum variation method, the parameter 𝑃𝐹𝑆 must be defined in terms of the variance of the 

relevant quantities 

 

𝑃𝐹𝑆 = √2𝑣𝛾 (1 + 𝑘
𝜎𝑚 + √𝑣𝜎𝐹(𝑁)

𝜎𝑦
) (4) 

 

where 𝑣𝛾 is the variance of the maximum shear strain acting on critical plane, 𝑣𝜎 and 𝜎𝑚 are 

the variance and global mean of the stress normal to the critical plane, and  

 

𝐹(𝑁) = √2 ln(𝑁) +
0.5772

√2 ln(𝑁)
 (5) 

 

is the function for maximum value in random process according Davenport [9]. When searching 

all planes, the number of cycles 𝑁 is unknown because only the variance is used. It is 

recommended to set 𝑁 = 1𝑒6 and keep this value constant when searching for the critical 

plane. 



Replacing the rainflow counting with join probability density function 

 

To accurately formulate the FSC in the frequency domain, it is essential to understand the 

summation of fatigue damage in this criterion which involves analysing numerous pairs of 

shear strain amplitude 𝛾𝑎 and maximum normal stress values 𝜎𝑛,𝑚𝑎𝑥. The strain amplitude is 

determined using the rainflow method, and the maximum stress value is recorded during the 

load cycle corresponding to this amplitude. All these measurements pertain to a single fixed 

position of the critical plane. 

 

Let us first analyse the distribution of shear strain amplitudes, which, in the spectral method, 

can be described by models that estimate amplitudes from a random process. Numerous 

proposals for these models exist, with the most common being the Dirlik model [10]  

 

𝑝𝛾(𝛾𝑎)  =  
1

√𝑚𝛾0

[
𝐾1

𝐾4
𝑒

−
𝑍
𝐾4 +

𝐾2𝑍

𝑅2
𝑒

−
𝑍2

2𝑅2 + 𝐾3𝑍𝑒−
𝑍2

2 ] (6) 

 

where 

 

𝑍 =
𝛾𝑎

√𝑚𝛾0

 𝐾1 =
2(𝑥𝑚 − 𝐼2)
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2
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√
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2
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are coefficients computed directly from shear strain PSD moments  

 

𝑚𝛾𝑘 = ∫ 𝐺𝛾(𝑓)𝑓𝑘𝑑𝑓
∞

0

   for   𝑘 = [0,1,… 4] (7) 

 

In the case of a narrowband random load with fully correlated components, a similar 

phenomenon is observed as with an in-phase constant amplitude load, where local maxima 

for shear strain and normal stress occur simultaneously. This results in one value of normal 

stress corresponding to each value of shear strain amplitude. However, for a random load with 

a wide load spectrum and varying degrees of correlation between components, a distribution 

of maximum stress is expected for a given shear strain amplitude. As a result, a two-

dimensional matrix of shear strain amplitude and maximum normal stress values is obtained. 

This matrix, evaluated in time domain using two stress components 𝜎𝑥𝑥(𝑡), 𝜏𝑥𝑦(𝑡) and rainflow, 

is shown on Fig. 1 for (a) narrow-band loading and 𝑟𝜎𝑥𝑥,𝜏𝑥𝑦 = 1.0, (b) narrow-band loading and 

𝑟𝜎𝑥𝑥,𝜏𝑥𝑦 = 0.0; (c) broadband loading and 𝑟𝜎𝑥𝑥,𝜏𝑥𝑦 = 1.0; (d) broadband loading and 𝑟𝜎𝑥𝑥,𝜏𝑥𝑦 =

0.0. The two-dimensional probability distribution is influenced by the spectrum width and the 

correlation between shear strain amplitude and maximum normal stress. In the extreme case 

of a narrow-band correlated load, Fig. 1(a), this distribution becomes near flat, extending from 

the origin (0, 0) to the maximum values of stress and strain amplitude. It can be assumed that 

this distribution can be described by Dirlik's amplitude distribution, Eq. (6). For each strain 

amplitude, a normal distribution of extreme values is observed with accordance to the 

exceedance theory. Following that the join probability density function can be formulated as 

follow 

 



(a)                                                                      (b) 

 
(c)                                                                      (d) 

 
  

Fig. 1: Distribution of the strain amplitude and maximum stress pairs on critical plane 

obtained by rainflow method for (a) narrowband loading and 𝑟𝜎𝑥𝑥,𝜏𝑥𝑦 = 1.0; (b) narrowband 

loading and 𝑟𝜎𝑥𝑥,𝜏𝑥𝑦 = 0.0; (c) broadband loading and 𝑟𝜎𝑥𝑥,𝜏𝑥𝑦 = 1.0; (d) broadband loading 

and 𝑟𝜎𝑥𝑥,𝜏𝑥𝑦 = 0.0; 

 

 

𝑝𝛾𝜎(𝛾𝑎 , 𝜎𝑛,𝑚𝑎𝑥) = 𝜙(𝜎𝑛,𝑚𝑎𝑥; 𝜙𝜇 , 𝜙𝜎)𝑝𝐷(𝛾𝑎;𝑚𝛾) (8) 

 

where 𝜙(𝜎𝑛,𝑚𝑎𝑥; 𝜙𝜇 , 𝜙𝜎) is the normal distribution and 𝑝𝐷(𝛾𝑎;𝑚𝛾) is the rainflow amplitude 

distribution according Dirlik. The mean value and variance in the normal distribution evolve as 

functions of the spectrum width and correlation. The following proposals for these values have 

been formulated:  

 

𝜙𝜇 = √
𝑚𝜎0

𝑚𝛾0
𝛾𝑎 + 𝜎𝑔 (9) 

 

𝜙𝜎 = [1 − |𝑟𝛾𝜎| + √1 − (
𝐸0

𝐸𝑃
)
2

] √𝑚𝜎0 (1 −
 𝛾𝑎

√𝑚𝛾0𝐹(𝑁)
) (10) 

 



where: 𝑚𝜎0 is the zero moment of the stress PSD, 𝜎𝑔 is the global mean stress, |𝑟𝛾𝜎| is the 

absolute value of correlation coefficient between shear strain and normal stress, 𝐸0 and 𝐸𝑃 

are expected zero crossing and peaks of stress. Using the defined two-dimensional probability 

density in Eq. (8), the Fig. 2 was created, showing the distributions estimated solely based on 

the power spectral density of shear strain and normal stress on the critical plane. 

 

(a)                                                                      (b) 

 
(c)                                                                      (d) 

 
 

Fig. 2: Distribution of the strain amplitude and maximum stress pairs on critical plane 

according Eq. (6), in accordance with the data presented on Fig. 1, (a) narrowband loading 

and 𝑟𝜎𝑥𝑥,𝜏𝑥𝑦 = 1.0; (b) narrowband loading and 𝑟𝜎𝑥𝑥,𝜏𝑥𝑦 = 0.0; (c) broadband loading and 

𝑟𝜎𝑥𝑥,𝜏𝑥𝑦 = 1.0; (d) broadband loading and 𝑟𝜎𝑥𝑥,𝜏𝑥𝑦 = 0.0. 

 

One of the main computational challenges is determining the correlation coefficient 𝑟𝛾𝜎 

between the shear strain and the normal stress evaluated on critical plane. This parameter is 

crucial because uncorrelated signals exhibit a significant spread in the normal stress 

distribution for a given shear strain amplitude. Assessing this parameter involves determining 

the cross power spectral density function between the normal and shear stress on the critical 

plane. It is assumed that the correlation coefficient between these values is the same as the 

shear stress is proportional to the shear strain and can be evaluated as follow 

 

𝑟𝛾𝜎 = 𝑟𝑛𝜏 = 𝑐𝑜𝑟𝑟 {�⃗� 𝝈(𝑡)�⃗� 
′
, 𝜏 𝝈(𝑡)𝜏 

′
} (11) 

 



where 𝝈(𝑡) is the stress tensor and the vectors �⃗�  and 𝜏  are presented on Fig. 3. In the 

frequency domain, the correlation coefficient can be computed as follows 

 

𝑟𝑛𝜏 = √
∫|𝐺𝑛𝜏(𝑓)|2𝑑𝑓

(∫𝐺𝑛𝑛(𝑓)𝑑𝑓)(∫𝐺𝜏𝜏(𝑓)𝑑𝑓)
 (12) 

 

where 𝐺𝑛𝜏(𝑓) is the cross-spectral density between the normal and shear stress and 𝐺𝑛𝑛(𝑓) 

and 𝐺𝜏𝜏(𝑓) are the PSD of the normal stress and shear stress, respectively. Obtaining the 

power spectral density values in the critical plane is a well-established procedure, detailed in 

publications by Mršnik et al. [11] and Gao et al. [12], among others. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Vectors �⃗�  and 𝜏  defining the critical plane and the direction of the shear strain. 

 

 

CONCLUSION AND REMARKS 

 

1. To define the multiaxial Fatemi-Socie criterion in the frequency domain, one must first 

express the 𝑃𝐹𝑆 parameter in terms of covariance matrixes of strain and stress. This allows the 

use of the maximum variance method to determine the critical plane. This approach involves 

calculating the equivalent shear strain amplitude expressed as the square root of the variance 

multiplied by two and the maximum value of normal stress, based on stress covariance matrix 

in accordance with Davenport's theory, Eq. (4). 

 

2. It was observed that for random processes, the Fatemi-Socie criterion necessitates 

determining pairs of shear strain amplitudes and the maximum values of normal stress on the 

critical plane, given a fixed orientation of this plane. In the time domain, this is achieved using 

the rainflow algorithm. To apply the Fatemi-Socie criterion in the frequency domain, a two-

dimensional probability distribution was defined by combining the normal and Dirlik distribution, 

presented as a Eq. (8). The proposed probability distribution uses only parameters determined 

from the stress and strain PSD function evaluated at critical plane, which allows it to be used 

without moving to the time domain. 

 

3. The proposed probability distribution, Eq. (8), describes the occurrence of pairs of strain 

amplitudes and maximum stress values in a manner similar to those obtained in the time 

domain using the rainflow algorithm. 

 

Critical plane defined by normal  

vector to the plane 

�⃗� = (𝑛𝑥, 𝑛𝑦 , 𝑛𝑧) 

Direction of the maximum 

shear strain defined by 

𝜏 = (𝜏𝑥 , 𝜏𝑦 , 𝜏𝑧) 

Vectors 𝜏 ⊥ �⃗�  are 

perpendicular, i.e. 

𝜏 ∙ �⃗� = 0 
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