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Abstract

Fatigue damage remains a significant issue for both metallic and non-metallic

components, being the main cause of in-service failures. Among the different

assessment methodologies, critical plane methods have gained significance as

they enable identifying the critical location and the early crack propagation

orientation. However, the standard plane scanning method used for calculat-

ing critical plane factors is computationally intensive, and as a result, it is usu-

ally applied only when the component's critical region is known in advance. In

the presence of complex geometries, loads, or constraints, a more efficient

method would be required. This work presents a closed-form solution to effi-

ciently evaluate a critical plane factor based on the Fatemi-Socie criterion, in

the case of isotropic linear-elastic material behavior and proportional loading

conditions. The proposed algorithm, based on tensor invariants and coordinate

transformation laws, was tested on different case studies under various loading

conditions, showing a significant reduction in computation time compared to

the standard plane scanning method.

KEYWORD S

closed-form solution, computational cost, critical plane, Fatemi-Socie, fatigue analysis, speed-
up calculation

Highlights

• A closed-form solution for a critical plane factor based on Fatemi-Socie is

presented.

• The method works in case of proportional loading and linear elasticity.

• The accuracy and efficiency of the method were proved against the usual

procedure.

• A reduction greater than 99.8% in computation time was achieved.
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1 | INTRODUCTION

The investigation of material's fatigue damage is a strate-
gic subject of major relevance in several areas including
academia and industry. Cumulative in-service fatigue
loading is still one of the major causes of unexpected
failures,1 and it represents an important issue for
designers. Although fatigue tests are often represented by
simplified analyses, complexities such as stress/strain
gradients, variable amplitude loading, randomness, and
multiaxiality can easily be encountered in real cases.2

Especially in such circumstances, finite element analysis
(FEA) provides a valuable tool able to account for the
complex features mentioned above.3–8 The standard way
to approach fatigue analysis consists of investigating the
component's critical regions (i.e., considering stress/
strain gradients and multiaxiality) and applying the cor-
rect loading history (i.e., accounting for variable ampli-
tude or randomness). However, given the wide variety of
geometries, loading conditions, and damage parameters
to be considered, the solution of such models can be
time-consuming during both the solution and post-
processing phases.

While the complexity of geometry and boundary con-
ditions is inherently related to the investigated problem
and therefore unavoidable, the selection of the damage
parameter, on the other hand, is a designer choice. Sev-
eral methods exist to assess fatigue damage, among them
two macro-categories can be identified: energy-based
methods9–12 and stress or strain-based methods.13–20

Among the above mentioned categories, in the context of
local damage methods, critical plane (CP) approaches
gained a lot of popularity in recent years.21–25 Methods
based on critical plane require evaluating the plane ori-
entation, which is subjected to the most severe damage.
This orientation is defined as the critical plane and is rep-
resentative of the orientation, at the material specific
location, over which the crack should nucleate and ini-
tially propagate. Especially for the implementation of
such damage parameters, large use of the FE method is
made when dealing with complex geometry and loading
histories. The standard way of evaluating the critical
plane factor, however, requires the calculation of the
damage factor over all possible plane orientations at each
node of a FE model identifying the critical plane through
a blind-search-for scanning process. Each plane
orientation is identified by a set of two angles that are
varied discretely by a fixed angular step to cover all the
three-dimensional space. The processes is carried on for
each node of the FE-model, usually throughout nested
for/end loops, thus requiring significant computational
power. Yet, the wide potential arising from such method-
ologies is currently limited due to their cumbersome

implementation, and if compared to other widespread
damage factors (e.g., nominal stress, hot spot stress,
notch stress approach, etc.), critical plane methods are
still confined to research and academia, being rarely used
in the industry. The extensive computation time causes
that only the critical zone of a component (e.g., notch)
can be directly examined. However, this area may not
always be identifiable a priori due to possible complex
geometries, load histories, and constraints.

The main challenge during the computational process
is to set the angular increment finding the right balance
between accuracy and efficiency. Previous researches
have focused on reducing the time needed for critical
plane factor calculations. Some methods use analytical or
semi-analytical techniques to determine the damage fac-
tor and the direction where it is maximized. A novel algo-
rithm presented by Marques et al26 utilizes analytical
formulas to calculate only the spectral parameters related
to the damage factor. Other approaches aim to increase
computational speed by only calculating the critical plane
factor in specific planes, rather than discretizing the
entire space. Wentingmann et al27 have developed an
algorithm that increases the speed of critical plane detec-
tion by segmenting a coarse Weber half sphere with quad
elements. Similarly, Sunde et al28 developed an adaptive
scheme that densifies a triangular mesh around the ele-
ments where the greatest damage has been observed.
Sometimes instead, the loading condition of the specimen
results in a reduced stress state that allows for a purely
analytical formulation of the damage factor.29–31

This paper represents an extension of a previous
paper published by the authors (Chiocca et al.32), where
an analytical formulation to efficiently apply the critical
plane method was developed for parameters that require
the maximization of a single factor (e.g., the original
formulation of Fatemi-Socie, which is based on the maxi-
mun shear strain range, Smith-Watson-Topper, Kandil-
Brown-Miller, etc.). The analytical model presented in the
following refers to the more general Fatemi-Socie formu-
lation according to Jiang et al,33 which is based on a com-
bination of shear strain range and normal stress. Also in
this case, indeed, under the assumption of proportional
loading and linear-elastic material, a closed-form solution
is possible. The model has been developed to be applied
together with finite element analyses; for this reason, the
constituent mathematics is based on a discrete formula-
tion of the time history and the stress and strain tensors
are defined for each generic loading condition. In the
case of a complex load history, the method can be
iteratively applied to each successive peak-to-valley,
valley-to-peak pair derived from a specific cycle counting
formulation. The first part of the paper explains the
methodology in details, providing the necessary
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theoretical background. In the second part of the paper,
case studies are presented, including an hourglass speci-
men, a notched specimen and welded component under
different loading conditions. A comparison is made
between the standard method of calculating CP factors
(i.e., plane scanning method) and the methodology pre-
sented in this work, in terms of solution accuracy and
computational cost.

2 | GENERAL BACKGROUND ON
CP FACTORS EVALUATION

Fatemi and Socie34 as well as Fatemi and Kurath35 intro-
duced a multiaxial fatigue criterion based on the shear
strain range. The parameter is mathematically defined in
Equation (1):

Δγ
2

1þk
σn,max

Sy

� �
ð1Þ

where Δγ represents the shear strain range acting over a
given plane, σn,max the maximum (i.e., over the load
cycle/time interval) normal stress on the plane being
evaluated, and Sy the material's yield strength. The mate-
rial parameter k can be determined by comparing fatigue
experimental data for uniaxial loading with data for pure
torsion as described in Olausson.36 Although certain
authors suggest that the additional parameter k varies
with the number of cycles to failure,37–40 a constant value
is considered for the present study. The fatigue parameter
defined in Equation (1) is always positive, based on the
fact that the shear strain range is considered as absolute
value and considering that only positive normal stresses
are taken into account (i.e., negative stresses are set equal
to zero).

The original approach proposed by Fatemi and
Socie34 as well as Fatemi and Kurath35 identified the

critical plane as the one experiencing the maximum
shear strain range Δγmax , disregarding the terms in para-
ntheses. Following this approach, the fatigue parameter
to be used is given by

FS0 ¼Δγmax

2
1þk

σn,max

Sy

� �
ð2Þ

An analytical solution for such criterion has been the
subject of previous articles published by the authors.32,41

In the current investigation, instead, as made by some
other authors (e.g., Jiang et al.33), the critical plane is
defined as the plane where the entire fatigue parameter
(FS) expressed in Equation (3) reaches its maximum
value, that is:

FS¼ max
Δγ
2

1þk
σn,max

Sy

� �� �
ð3Þ

The critical plane defined in this way generally has a dif-
ferent orientation, if compared to the critical plane
defined considering only the maximum of the shear
strain range, as it also depends on the normal stress. This
is a different case, where a closed-form solution is still
possible, under more restrictive hypothesis, as it will be
discussed in Section 4.

3 | EVALUATING THE CP FACTOR
USING THE STANDARD PLANE
SCANNING TECHNIQUE

In this section, the standard procedure for determining
the CP factor through the plane scanning technique is
briefly recalled, as presented in Figure 1. The time-
varying stress σðtÞ and strain εðtÞ tensors can be obtained
at each node in a FE-model in a general reference frame
Oxyz:

FIGURE 1 Standard procedure sequence to assess a critical plane factor by plane scanning method. [Colour figure can be viewed at

wileyonlinelibrary.com]
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σðtÞ¼
σxxðtÞ τxyðtÞ τxzðtÞ
τyxðtÞ σyyðtÞ τyzðtÞ
τzxðtÞ τzyðtÞ σzzðtÞ

2
664

3
775,

εðtÞ¼

εxxðtÞ
γxy
2
ðtÞ γxz

2
ðtÞ

γyx
2
ðtÞ εyyðtÞ

γyz
2
ðtÞ

γzx
2
ðtÞ γzy

2
ðtÞ εzzðtÞ

2
6666664

3
7777775

ð4Þ

Stress and strain tensors can be utilized to describe vari-
ous types of loading conditions, such as uniaxial, biaxial,
or multiaxial; in addition, the load time history can
exhibit proportional or non proportional stress and strain
components. It is possible to calculate stress and strain
values acting on different plane orientations, that is, by
considering different reference coordinate systems, using
simple matrix operation RTσR, where R represents the
rotation matrix. Actually, two angular coordinates, say θ
and ψ , are strictly necessary to identify a plane orienta-
tion. In this sense there are ∞2 possible orientation at
each location to be checked. By incrementally rotating
the plane (or its unit vector) through fixed angular incre-
ments (i.e., Δθ and Δψ), stress and strain values in all
directions can be approximately obtained. Once this pro-
cess has been carried out, the plane that maximizes the
reference CP parameter can be identified as the critical
plane. The above mentioned procedure requires to imple-
ment nested for/end loops and this results highly ineffi-
cient from a computational point of view, depending on
the selected angular resolution. This becomes even more
critical when trying to perform this analysis for many
points in the component (i.e., nodes in the FE model).

For the present study, a rotation sequence in a
moving reference frame was considered, the first rota-
tion ψ about the z-axis and the second rotation θ about
the y-axis, as shown in Equation (5), and the plane scan-
ning method was applied through angular steps Δθ and
Δψ of 1�.

R¼RzðψÞRyðθÞ

¼
cosðθÞcosðψÞ �sinðψÞ cosðψÞsinðθÞ
sinðψÞcosðθÞ cosðψÞ sinðθÞsinðψÞ
�sinðθÞ 0 cosðθÞ

2
64

3
75 ð5Þ

Through the rotation matrix R, it is possible to retrieve
the stress and strain tensors in the rotated reference
frame as presented in Equation (6).

σ0 ¼RTσR, ε0 ¼RTεR ð6Þ

4 | CLOSED-FORM SOLUTION

In this section, the mathematical framework of the
method is outlined. As the method was developed for a
finite element modeling-related application, the load his-
tory is described by a discrete formulation of the time
sequence, via load steps in a FE-analysis. To this regard,
the relationships of Equation (7) give the stress and strain
tensors at the generic i-th loading step.

σðiÞ ¼
σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

2
64

3
75
ðiÞ

, εðiÞ ¼

εxx
γxy
2

γxz
2

γyx
2

εyy
γyz
2

γzx
2

γzy
2

εzz

2
666664

3
777775

ðiÞ

ð7Þ

Starting from the above tensors, the strain range tensor
between the i-th and iþ1-th loading conditions can be
easily determined, as shown in Equation (8); in order to
compute the strain range tensor, the starting tensors have
to be defined with respect to the same reference frame,
but this is fairly common within the post-processing
phase of FE-analyses.

Δεði,iþ1Þ ¼ εðiÞ � εðiþ1Þ ¼

Δεxx
Δγxy
2

Δγxz
2

Δγyx
2

Δεyy
Δγyz
2

Δγzx
2

Δγzy
2

Δεzz

2
6666664

3
7777775

ði,iþ1Þ

ð8Þ

Under the hypotheses of linear isotropic elasticity and
proportional loading, the following deductions hold:

• the stress and strain tensors have the same principal
directions, that is, the same eigenvectors;

• the strain tensors (as well as the stress tensor), evalu-
ated at different time steps, ðiÞ and ðiþ1Þ have the
same principal directions, that is, the same
eigenvectors.

From the above considerations, it follows that also
the strain range tensor Δεði,iþ1Þ (as well as, for example
the stress range tensor in case of the Findley criterium)
has the same principal directions of the strain or the
stress tensors, evaluated at the i-th and iþ1-th time
steps.

On the basis of the coincidence between the principal
directions of the tensors σðiÞ, σðiþ1Þ, εðiÞ, εðiþ1Þ and
Δεði,iþ1Þ, it is now useful to refer to the Mohr's circular
representation to further illustrate the method.

4 CHIOCCA ET AL.
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Figure 2 represents the tensor quantities, which are
present in the Fatemi-Socie critical plane method (see
Equation 1), namely, Δεði,iþ1Þ, σðiÞ, and σðiþ1Þ. As a first
step, all the stress and strain components have to be
obtained (at a given node in the FE model) in a given,
typically the global, reference frame Oxyz. Then, an
eigenvalue–eigenvector analysis is required for the strain
range tensor Δεði,iþ1Þ; the so obtained eigenvalues
(i.e., Δεði,iþ1Þ

1 , Δεði,iþ1Þ
2 , and Δεði,iþ1Þ

3 ) represent the princi-
pal parameters of the strain range, while the eigenvectors
define the principal directions n1

ðiÞ,ðiþ1Þ, n2
ðiÞ,ðiþ1Þ, and

n3
ðiÞ,ðiþ1Þ of the Δεði,iþ1Þ tensor.

As previously stated, these unit vectors also repre-
sent the principal directions (i.e., eigenvectors) of the
tensors σðiÞ and σðiþ1Þ. Therefore, the three tensors
Δεði,iþ1Þ, σðiÞ, and σðiþ1Þ expressed in the principal refer-
ence frame On1n2n3 are represented by their principal
components:

• Δεði,iþ1Þ
1 , Δεði,iþ1Þ

2 , Δεði,iþ1Þ
3 for Δεði,iþ1Þ tensor;

• σðiÞ1 , σðiÞ2 , σðiÞ3 for σðiÞ tensor;

• σðiþ1Þ
1 , σðiþ1Þ

2 , σðiþ1Þ
3 for σðiþ1Þ tensor;

FIGURE 2 Graphical representation of the analytical method by Cauchy elementary cube and Mohr's circle by means of the tensors

Δεði,iþ1Þ, σðiÞ, and σðiþ1Þ [Colour figure can be viewed at wileyonlinelibrary.com]
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with the usual convention α1 > α2 > α3, α representing
the generic eigenvalue.

Finally, on the basis of the Mohr's circular representa-
tion, the FS parameter can be obtained as follows. The
analytical expression of Δγ

2

ði,iþ1Þ
, as a function of the ω

angle, which represents a rotation about the n2 principal
direction (see Figure 2), is given by the following rela-
tionship 9.

Δγði,iþ1ÞðωÞ
2

¼ Δεði,iþ1Þ
1 �Δεði,iþ1Þ

3

2

 !
sinð2ωÞ ð9Þ

Considering the normal stress acting on the plane
identified by the ω angle, the maximum value among the
two conditions ðiÞ and ðiþ1Þ of the load cycle have to be
considered:

σðiÞ,ðiþ1Þ
n,max ðωÞ¼ max

fðiÞ,ðiþ1Þg
σ1þσ3

2

� �
þ σ1�σ3

2

� �
cosð2ωÞ

h iðiÞ,ðiþ1Þ

ð10Þ

From Figure 2, it can be observed that the maximum
normal stress can belong either to the ðiÞ-th time step, or
the ðiþ1Þ-th time step, depending on the plane orienta-
tion ω. In order to solve the following maximization
problem, represented by Equation (11),

FSðωÞ¼ max
fωg

Δγði,iþ1ÞðωÞ
2

1þk
σðiÞ,ðiþ1Þ
n,max ðωÞ

Sy

 !" #
ð11Þ

the following parameters are introduced:

a¼ Δεði,iþ1Þ
1 �Δεði,iþ1Þ

3

2

 !

b¼ σ1þσ3
2Sy

� �ðiÞ,ðiþ1Þ

c¼ σ1�σ3
2Sy

� �ðiÞ,ðiþ1Þ

8>>>>>>>>><
>>>>>>>>>:

ð12Þ

Parameter a represents the diameter of the largest strain
range circle in Figure 2; parameter b represents the cen-
ter of the largest stress circle, normalized with respect to
the yield stress; parameter c represents the diameter of
the largest stress circle, normalized with respect to the
yield stress. It should be noted that a is referenced to
the load cycle, while b and c has to be evaluated for ðiÞ-th
and ðiþ1Þ-th time step. Parameters a and c are always
positive according to the standard convention on the
eigenvalues (Δε1 ≥Δε2 ≥Δε3 and σ1 ≥ σ2 ≥ σ3), while b
can be either positive or negative.

After substituting the parameters of Equation (12)
into Equation (11), the maximum value of FS parameter
can be determined by carrying out an analytical deriva-
tive of the FSðωÞ function, as presented in Equation (13),
with respect to ω.

FS¼ max
fωg

asinð2ωÞ 1þkðbþ ccosð2ωÞÞð Þ½ � ð13Þ

It is worth noting that, generally, two critical plane
orientations can always be obtained. Indeed, in case the
eigenvalues Δεði,iþ1Þ

1 , Δεði,iþ1Þ
2 , and Δεði,iþ1Þ

3 are all different
from each other, the algorithm identifies two critical
planes associated with the same maximum value FS, as

FIGURE 3 Representation, by means of the Mohr circles, of the different number of existing critical planes for proportional loading

scenarios. [Colour figure can be viewed at wileyonlinelibrary.com]
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presented in Figure 3A. With reference to the circular
representation, this occurs for two points located on the
largest circle related to the strain ranges, having the same
normal strain range (and also the same normal stress
σn,max), since the absolute value of Δγði,iþ1Þ is accounted
for in the fatigue parameter FS. These planes are identi-
fied by rotating by the angles þ2ω and �2ω on the maxi-
mum Mohr's circle, with respect to the plane having the
maximum principal strain range. As �2ω angles are asso-
ciated with the same maximum normal stress, the same
FS is obtained.

There are some special cases with more than two
critical planes. For example, when there are two
identical eigenvalues of the stress tensors at load step i
and load step iþ1 (i.e., uniaxial or equibiaxial state
of stress). In this case also, the strain range tensor
Δεði,iþ1Þ has two identical eigenvalues, and there exist
infinite critical plane orientations associated with the
same FS value. In fact, the points identified in Figure 3B
by the angles �2ω can be considered to be obtained by a
rotation about either the direction identified by the
eigenvector n2 or the direction identified by the
eigenvector n3 in case of uniaxial state of stress, or by a
rotation about either the direction identified by the
eigenvector n1 or the direction identified by the
eigenvector n2 in case of equibiaxial state of stress. In
both cases, any direction that can obtained by a linear
combination of n2 or n3 (uniaxial) and n1 or n2

(equibiaxial) identifies a critical plane as well. This is, for
example, the case of an axisymmetric specimen under
axisymmetric load condition. Another special case is that
of an alternate shear load condition, such as a round
specimen under alternate torsion. In this case, there are
two opposite eigenvalues of the strain range tensor

Δεði,iþ1Þ
1 ¼�Δεði,iþ1Þ

3 and two opposite eigenvalues of the

stress tensor at load step i (i.e., σðiÞ1 ¼�σðiÞ3 ) and at load

step iþ1 (i.e., σðiþ1Þ
1 ¼�σðiþ1Þ

3 ). Under these conditions,
for each point determined by �2ω in the circular repre-
sentation, there are two critical planes since the maxi-
mum (positive) normal stress acts on a given plane at i
load-step and on the conjugate plane (orthogonal to the
previous one) at iþ1 load step. Furthermore, as pre-
sented in Figure 3C, if an hydrostatic state of stress occurs,
there are three identical eigenvalues, and no critical plane
exists since there is no shear strain and being FS¼ 0.

The rotation matrices to be considered for identifying
the critical plane orientation are given in Equation (14),
and they are obtained considering the product of the
rotation matrix Rp, representing the matrix containing
the direction cosines related to the principal directions,
with the rotation matrix Ry, representing the rotation
about the local y-axis of an angle �ω.

R¼RpRy �ωð Þ

¼
j j j

n1
ið Þ, iþ1ð Þ n2

ið Þ, iþ1ð Þ n3
ið Þ, iþ1ð Þ

j j j

2
664

3
775

cos �ωð Þ 0 sin �ωð Þ
0 1 0

�sin �ωð Þ 0 cos �ωð Þ

2
664

3
775

ð14Þ

In the following, for the sake of simplicity, the treatise
will refer to the solution obtained for the plane identified
by þω. Similar relationships hold for the plane
identified by �ω.

The result of the maximization problem defined in
previous Equation (13) in terms of ω and FS are given
in the following Equations (15)–(16):

ω¼

1
2
arctan

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k b d�2ð Þþb2ð�kÞþ4c2k
	 
þd�1

ck

r
ffiffi
c

p ffiffiffi
k

p
d�bk�1

ck

0
BBBBBBB@

1
CCCCCCCA

b≥ � 1
k

1
2
arctan

�
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k b dþ2ð Þþb2k�4c2k
	 
þdþ1

ck

r
ffiffi
c

p ffiffiffi
k

p

�dþbkþ1
ck

0
BBBBBBB@

1
CCCCCCCA

b≤ � 1
k

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

ð15Þ

FS¼

a dþ3bkþ3ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k b d�2ð Þþb2ð�kÞþ4c2k
	 
þd�1

ck

r
8
ffiffiffi
2

p ffiffi
c

p ffiffiffi
k

p b≥ � 1
k

a d�3bk�3ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k b dþ2ð Þþb2k�4c2k
	 
þdþ1

ck

r
8
ffiffiffi
2

p ffiffi
c

p ffiffiffi
k

p b≤ � 1
k

8>>>>>>>><
>>>>>>>>:

ð16Þ

where d¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 b2þ8c2
	 
þ2bkþ1

q� �ðiÞ,ðiþ1Þ
represents an

aggregative parameter to simplify the formula structure.
It has to be noted that the analytical expression of
Equations (15)–(16) have to be evaluated for both ðiÞ and
ðiþ1Þ load cycles, and then, the FS CP factor is selected
as the solution having the maximum (always positive)
value.

As it can be observed, both ω and FS are character-
ized by a C0-type continuity condition at b¼� 1

k.
An example of the solution for a structural steel

having Sy ¼ 355MPa is given in Figure 4. The solution is
given for two fixed values of the material constant k¼ 0:1
and k¼ 1, which represent typical extreme values for that
parameter. The stress-strain state involved in the loading
cycle is described by parameters a,b,c given in previous

CHIOCCA ET AL. 7

 14602695, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ffe.14153 by C

rui/ C
onferenza D

ei R
ettori D

elle, W
iley O

nline L
ibrary on [07/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Equation (12); in other words, each point on the surface
represent a different fatigue loading scenario. Figure 4A,
B reports the ω function, while the FS function is shown
in Figure 4C,D for k¼ 0:1 and k¼ 1, respectively. It can
be observed how the ω solution can be represented
through an individual surface, being independent of the
value of a, that is, on the shear strain range.

On the other hand, the FS parameter is strongly
influenced by the shear strain range, represented by
parameter a and moderately influenced by parameter b
representing the normalized radius of the largest stress
circle. The influence of parameter c on the FS parameter
is much lower in all the domain. The effect of k can be
clearly noticed, for b¼� 1

k, in all the plots.
In order to enable a direct graphical comparison

between the analytical formulation and the plane

scanning method, the same rotation sequence of
Equation (5) can be employed, as presented in the
following:

R¼RzðψÞRyðθÞ¼
r11 r12 r13
r21 r22 r23
r31 r32 r33

2
64

3
75 ð17Þ

On the basis of Equations (5), (14), and (17), a possible
way to obtain the two angles (θ and ψ) in analytical form
is shown in Equation (18).

θ ¼ arctan2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r213þ r223

q
,r33

� �
ψ ¼ arctan2 r23,r13ð Þ

ð18Þ

FIGURE 4 Surface plots of ω and FS functions (A) ω for k¼ 0:1, (B) ω for k¼ 1, (C) FS for k¼ 0:1 and a¼ ½0:001,0:004,0:007,0:01�, and
(D) FS for k¼ 1 and a¼ ½0:001,0:004,0:007,0:01� [Colour figure can be viewed at wileyonlinelibrary.com]
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5 | MATERIAL AND METHOD

In order to validate the analytical solution presented in
the previous section, three different case studies were
selected, to represent a wide range of structural problems
that may be found in practical applications. The case
studies include an hourglass specimen, a notched speci-
men, and a welded joint between a pipe and a plate. The
hourglass and notched specimens were subjected to
tensile-compressive and torsional loading, while the
welded joint was subjected to pure bending and pure tor-
sional loading. The technical drawing of the hourglass
specimen, based on ASTM E466 with a minimum diame-
ter of 12 mm, is shown in Figure 5A. The notched

specimen geometry, described by a notch radius of
0.2 mm and a minimum diameter of 16 mm, is shown in
Figure 5B. Figure 5C shows the welded joint geometry,
which consists of a tube, a reinforcement circular plate,
and a quadrangular base plate. The seam weld of interest
for this work was the one between the tube and the base
plate. The welded joint was previously studied by the
same authors examining its fatigue endurance under dif-
ferent loading conditions and in the presence of residual
stresses.4-6,42-45 For all the cases, FE-analyses were con-
ducted using the second release of Ansys© 2021 software.
Static structural analyses were performed assuming small
displacements; structural steel S355 was considered as
the material for all three case studies with linear elastic

FIGURE 5 Finite element models and technical drawings of the investigated case studies: (A) two-dimensional model of the hourglass

specimen, (B) two-dimensional model of the notched specimen, and (C) welded joint with model and submodel. [Colour figure can be

viewed at wileyonlinelibrary.com]
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behavior, E¼ 210GPa and ν¼ 0:3. In order to determine
the FS critical plane factor, a yield strength Sy ¼ 355MPa
and a material constant k¼ 0:4 were considered.

A three-dimensional FE model was used for the
welded joint with 3D structural brick elements
(i.e., SOLID185) with 20 nodes and a quadratic shape
function. Whereas, in the case of hourglass and notched
specimens, an axisymmetric model was employed
together with 2D structural plane elements
(i.e., PLANE183)* with eight nodes and a quadratic shape
function. The mesh size for all FE models was achieved
after a convergence analysis by attaining a difference
lower than 5% on the maximum von Mises stress.

The loading conditions were obtained by applying
forces or moments together with fixed supports on the
appropriate model surfaces. In the case of hourglass and
notched specimens, the outer regions of the models were
used for applying the boundary conditions, while the top
tube surface and the plate holes were used in the case of
the welded joint.

The load sequences reported in Tables 1 and 2 were
applied, consisting of two proportional loading condi-
tions. Each column of Table 1 reports the combination of

forces/moment applied to a specific specimen geometry
in a particular load step of the FE-simulation.

6 | RESULTS

In this section, the FS closed-form solution results are
discussed in comparison with those obtained by using the
standard plane scanning method. The functions pre-
sented in Section 4 provide the essential mathematical
background to apply the analytical method; the CP factor
solutions resulting from the above functions furnish the
results explicitly, yielding a precise solution rather than a
numerical approximation.

Figure 6 provides a graphical comparison of CP orien-
tation and CP values between the two methods for the
three different loading cases presented in the previous
section, including the hourglass specimen, notched speci-
men, and welded joint. To provide a complete overview
of the results, the FS values are reported in Table 3 to
allow a direct comparison between the employed
methods. The tensile loading case for the hourglass and
notched specimens, as well as the bending loading case
for the welded joint, are shown in Figure 6A–C, while
the torsional loading cases are presented in Figure 6D–F,
respectively. The CP orientations identified by the

*Element keyoption(3) = 1 for tension-compression loading and
element keyoption(3) = 6 for torsion loading.

TABLE 1 Load steps combination used during simulations to apply proportional loading conditions with F, F1, and F2 referring to the

applied forces and Mt referring to the torque shown in Figure 5.

Load type

Hourglass specimen Notched specimen Welded joint

Load step n.1 Load step n.2 Load step n.1 Load step n.2 Load step n.1 Load step n.2

Case 1 F¼ 19 kN F¼ 76 kN F ¼ 5:3 kN F ¼ 53 kN F1 ¼ 5:7 kN F1 ¼ 5:7 kN

Mt ¼ 0N m Mt ¼ 0N m Mt ¼ 0N m Mt ¼ 0N m F2 ¼ 5:7 kN F2 ¼ 5:7 kN

Case 2 F¼ 0 kN F¼ 0 kN F ¼ 0 kN F ¼ 0 kN F1 ¼�14:9 kN F1 ¼ 14:9 kN

Mt ¼ 10N m Mt ¼ 100N m Mt ¼ 10N m Mt ¼ 80N m F2 ¼ 14:9 kN F2 ¼�14:9 kN

TABLE 2 Overview of the main normal and shear stress components pattern over load steps; stress components are based on the

reference frames reported in Figure 5.

Load type Hourglass specimen Notched specimen Welded joint

Case 1

Case 2

10 CHIOCCA ET AL.
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closed-form solution are represented though circular and
triangular marks in all the figures. As it can be observed,
the closed-form solution perfectly fits with the maximum
shown in Table 3 and in Figure 6 as colored surfaces,
which represent the FSðθ,ψÞ values derived from the spa-
tial plane scanning method. The surfaces exhibit period-
icity by repeating the same pattern every π radiant over
both θ and ψ angular directions. Nevertheless, the solu-
tion found by the proposed closed-form solution can
identify all the maximum by considering the function
periodicity. In fact, in the case of opposite eigenvalues of
Δεði,iþ1Þ (i.e., alternate torsion), the additional critical

planes are represented by the squares in Figure 6D–F,
found by imposing a periodicity of π

2 on �ω. The values of
parameters a, b, and c are reported in Table 4 for the
case-studies presented in Figure 6A–F.

The improvement in computing time is illustrated in
Table 5. All codes were executed in the
Matlab® environment on an 11th Gen. Intel(R) Core(TM)
i7 with 16GB of available RAM and 4 cores. The perfor-
mance index PI defined in Equation (19) was used to
compare the computational efficiency of the closed-form
solution, to the standard plane scanning method. In
Equation (19), tcs represents the computation time

FIGURE 6 Comparison of FS solutions between the standard plane scanning method FSðθ,ψÞ and that derived from the closed-form

solution (i.e., c.f.sol.) FS for (A) the hourglass specimen subjected to tensile loading, (B) the notched specimen subjected to tensile loading,

(C) the welded joint subjected to bending loading, (D) the hourglass specimen subjected to torsion loading, (E) the notched specimen

subjected to torsion loading, and (F) the welded joint subjected to torsion loading. [Colour figure can be viewed at wileyonlinelibrary.com]

CHIOCCA ET AL. 11
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required by the closed-form solution, while tps represents
the computation time required by the plane scanning
procedure. PI is 100% when the computation time of the
closed-form solution is zero, or when the computation
time required by the plane scanning method is infinite,
and 0% when there is no reduction in computing time,
that is, tcs ¼ tps. The significant time reduction is caused
by avoiding multiple plane scanning in space while
providing the exact solution. As it can be observed, signif-
icant time reduction was achieved, with the PI parameter
consistently exceeding 99.8%.

PI¼ 1� tcs
tps

� �
ð19Þ

The computational time was significantly decreased
from approximately 2 s to around 2e�3 s by implement-
ing a non-optimized code in Matlab®. With further opti-
mization through the use of lower level programming
languages, additional reductions in computational time
are likely to be achieved. This significant increment in
computation efficiency suggests the possibility of using
the CP method also for complex geometries, when the
critical locations are not known in advance.

It is worth noting that if any of the assumptions given
in Section 4 is not holding (e.g., in presence of residual
stresses, non proportional loading, plasticity), a correct
closed-form solution cannot be obtained. Figure 7 pro-
vides a practical example in which non-proportional
loading conditions were applied to the hourglass speci-
men, notched specimen and the welded joint. The non
proportional loading conditions are reported in Table 6
and are identified as Case 3. Under these conditions a sig-
nificant difference can be found both in terms of FS
parameter and critical plane orientations, as shown in
Table 7. As it can be observed, the obtained parameter

TABLE 3 Comparison of FS values and critical plane orientations between the closed-form solution and the standard plane scanning

method for proportional loading conditions.

FS comparison (�ω)

Load type

Hourglass specimen Notched specimen Welded joint

Closed-form Standard Closed-form Standard Closed-form Standard

Case 1 2:42�10�3 2:42�10�3 9:20�10�3 9:20�10�3 6:45�10�3 6:45�10�3

Case 2 1:83�10�3 1:83�10�3 1:55�10�3 1:55�10�3 4:53�10�3 4:53�10�3

θ and ψ comparison (þω)

Load type

Hourglass specimen Notched specimen Welded joint

Closed-form Standard Closed-form Standard Closed-form Standard

θ ψ θ ψ θ ψ θ ψ θ ψ θ ψ

Case 1 0.975 �2.83 -a -a 1.570 2.41 1.571 2.42 1.570 �2.40 1.570 �2.39

Case 2 1.156 1.727 1.155 1.727 1.440 �1.570 1.442 �1.571 0.1367 2.04 0.1363 2.05

θ and ψ comparison (�ω)

Load type

Hourglass specimen Notched specimen Welded joint

Closed-form Standard Closed-form Standard Closed-form Standard

θ ψ θ ψ θ ψ θ ψ θ ψ θ ψ

Case 1 2.16 �0.304 -a -a 1.570 1.090 1.571 1.091 1.57 �1.053 1.56 �1.054

Case 2 1.512 3.01 1.516 3.02 0.1301 �1.572 0.1303 �1.571 1.434 2.04 1.427 2.05

aInfinite solutions exist.

TABLE 4 Parameter values required to calculate the FS closed-

form solution for all case studies described in Figure 6.

Case study a b c

Hourglass – Tensile 0.0017 0.9729 0.9731

Notched – Tensile 0.0121 0.7041 0.6218

Welded joint – Bending 0.0046 0.8835 0.8296

Hourglass – Torsion 0.0018 0 0.0843

Notched – Torsion 0.0015 0 0.7415

Welded joint – Torsion 0.0043 0 0.7903

12 CHIOCCA ET AL.
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TABLE 5 Comparison of computational cost between the closed-form solution and the standard plane scanning method.

Computational time comparison

Load type

Hourglass specimen Notched specimen Welded joint

tcs tps PI tcs tps PI tcs tps PI

Case 1 2.15e�3 s 2.21 s 99.9% 2.84e�3 s 2.006 s 99.8% 2.47e�3 s 1.849 s 99.8%

Case 2 1.822e�3 s 2.27 s 99.9% 1.985e�3 s 2.282 s 99.9% 2.04e�3 s 2.164 s 99.9%

FIGURE 7 Comparison of FS solutions between the standard plane scanning method FSðθ,ψÞ and that derived from the closed-form

solution (i.e., c.f.sol.) FS for (A) the hourglass specimen subjected to non proportional tensile-torsion loading, (B) the notched specimen

subjected to non proportional tensile-torsion loading, and the welded joint subjected to non proportional bending-torsion loading. [Colour

figure can be viewed at wileyonlinelibrary.com]

TABLE 6 Load steps combination used during simulations to apply non-proportional loading conditions, with F, F1 and F2 referring to

the applied forces and Mt referring to the torque shown in Figure 5.

Load type

Hourglass specimen Notched specimen Welded joint

Load step n.1 Load step n.2 Load step n.1 Load step n.2 Load step n.1 Load step n.2

Case 3 F¼ 140 kN F¼ 0 kN F ¼ 53 kN F ¼ 0 kN F1 ¼ 3:4 kN F1 ¼�11 kN

Mt ¼ 0N m Mt ¼ 100N m Mt ¼ 0N m Mt ¼ 80N m F2 ¼ 3:4 kN F2 ¼ 11 kN

TABLE 7 Comparison of FS values and critical plane orientations between the closed-form solution and the standard plane scanning

method for non-proportional loading conditions.

FS comparison (�ω)

Load type

Hourglass specimen Notched specimen Welded joint

Closed-form Standard Closed-form Standard Closed-form Standard

Case 3 8.12e�3 9.23e�3 6.81e�3 6.91e�3 4.82e�3 5.17e�3

(Continues)(Continues)(Continues)
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FS is always smaller than the one obtained by means of
the plane scanning method.

7 | CONCLUSIONS

Following a previous work by the authors, the purpose of
the present study was to develop a closed-form solution
for the Fatemi-Socie CP factor in its extended formulation,
that is, including the shear strain range and the maximum
normal stress acting on the plane during the loading cycle.
The method utilizes stress and strain tensor invariants
and coordinates transformation law and was implemen-
ted in a readily available Matlab® script. The closed-form
solution was discussed with reference to its graphical rep-
resentation for a structural steel, and similar solutions can
be easily obtained for different metallic materials. Various
case studies were analyzed and discussed in comparison
to the standard plane scanning method, to provide a wide
range of component geometries and loading conditions.
From the performed analyses and results obtained, the
following conclusions can be drawn:

• the method can be used for uniaxial and multiaxial
proportional loading conditions, under linear-elastic
material behavior;

• the method offers a significant speed up in solution
time, with respect to the standard plane scanning
method, with a reduction of computation time greater
than 99.8% on a single node, for the examined test
cases, where a 1� resolution in plane orientation was
selected; this reduction in computation time could
potentially make CP methods easier and more attrac-
tive to be used, even in an industrial context;

• the proposed method provides a closed-form solution
for the critical plane and, consequently, for the damage

parameter, compared to the standard plane scanning
method;

• the developed analytical formulation provides an more
in depth understanding of critical plane orientation; in
particular, it was discussed that in general, for a three-
dimensional state of stress, there are at least two criti-
cal plane orientations, while infinite orientations can
be obtained in case of two identical eigenvalues of the
strain range tensor, and four critical planes exist in
case of equal and opposite eigenvalues of the stress
tensor;

• the method is easy to use and can be implemented in a
variety of codes since it utilizes basic tensor math; the
extension to other CP factors likely appears to be
straightforward.

Reducing computation time during the post-
processing phase is crucial for evaluating damage factors,
as it enables a more detailed and complete evaluation of
the studied model, even in case of complex geometries
with FE models made with large number of nodes.

NOMENCLATURE
α1,α2,α3 eigenvalues
ω angle by which the principal reference frame

is to be rotated
Δεði,iþ1Þ strain range tensor between the i-th and

iþ1-th load steps
σ0 rotated stress tensor
σ stress tensor
σðiÞ stress tensor at the i-th load step
ε0 rotated strain tensor
ε strain tensor
εðiÞ strain tensor at the i-th load step
nj

ðiÞ,ðiþ1Þ j-th principal direction of the strain range
tensor

TABLE 7 (Continued)

θ and ψ comparison (þω)

Load type

Hourglass specimen Notched specimen Welded joint

Closed-form Standard Closed-form Standard Closed-form Standard

θ ψ θ ψ θ ψ θ ψ θ ψ θ ψ

Case 3 2.10 �1.096 1.822 �2.76 1.745 �2.51 1.382 �2.07 2.17 0.657 1.759 �1.382

θ and ψ comparison (�ω)

Load type

Hourglass specimen Notched specimen Welded joint

Closed-form Standard Closed-form Standard Closed-form Standard

θ ψ θ ψ θ ψ θ ψ θ ψ θ ψ

Case 3 2.16 �0.304 1.822 �2.76 1.395 �0.631 1.382 �2.07 1.506 0.615 1.759 �1.382
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Δγ range of shear strain
Δθ, Δψ fixed angular increment
γij shear strain
ν Poisson's ratio
ω angle of the principal reference frame rotation
σii normal stress
σn,max maximum normal stress
τij shear stress
θ, ψ standard scanning plane angles
εii normal strain
abcd closed-form solution parameters
E Young's modulus
F force
FS Fatemi-Socie critical plane parameter
k Fatemi-Socie material constant
Mt torque
Oxyz reference coordinate system
R rotation matrix
Ri rotation matrix about i-axis
Sy yield strength
tcs computation time for the closed-form solution
tps computation time for the plane scanning

procedure
PI performance index
CP critical plane
FEA finite element analysis
FEM finite element model

ACKNOWLEDGMENTS
This study was financed by the European
Union – NextGenerationEU (National Sustainable Mobil-
ity Center CN00000023, Italian Ministry of University
and Research Decree n. 1033 – 17/06/2022, Spoke 11 –
Innovative Materials & Lightweighting). The opinions
expressed are those of the authors only and should not be
considered as representative of the European Union or
the European Commission's official position. Neither the
European Union nor the European Commission can be
held responsible for them.

DATA AVAILABILITY STATEMENT
A Matlab® script that implements the closed-form algo-
rithm reported in the article has been uploaded to a
GitHub repository: https://github.com/achiocca1/FS-Sol.
For ease of use, the folder includes the nodal results of
the tensile loaded notched specimen.

ORCID
Andrea Chiocca https://orcid.org/0000-0002-1472-4398
Michele Sgamma https://orcid.org/0009-0003-8637-
9946
Francesco Frendo https://orcid.org/0000-0002-7472-
4664

REFERENCES
1. Bhaumik SK, Sujata M, Venkataswamy MA. Fatigue failure of

aircraft components. Eng Fail Anal. 2008;15(6):675-694.
2. Kuncham E, Sen S, Kumar P, Pathak H. An online model-

based fatigue life prediction approach using extended Kalman
filter. Theor Appl Fract Mech. 2022;117:103143.

3. Chen F, Shang D-G, Li D-H, Wang L-W. Multiaxial thermo-
mechanical fatigue life prediction based on notch local stress-
strain estimation considering temperature change. Eng Fract
Mech. 2022;265:108384.

4. Chiocca A, Frendo F, Bertini L. Evaluation of residual stresses
in a tube-to-plate welded joint. MATEC Web of Conf. 2019;300:
19005.

5. Chiocca A, Frendo F, Bertini L. Evaluation of residual stresses
in a pipe-to-plate welded joint by means of uncoupled thermal-
structural simulation and experimental tests. Int J Mech Sci.
2021;199:106401.

6. Frendo F, Marulo G, Chiocca A, Bertini L. Fatigue life assess-
ment of welded joints under sequences of bending and torsion
loading blocks of different lengths. Fract Eng Mater Struct.
2020;43(6):1290-1304.

7. Meneghetti G, Campagnolo A, Visentin A, et al. Rapid evalua-
tion of notch stress intensity factors using the peak stress
method with 3D tetrahedral finite element models: comparison
of commercial codes. Fract Eng Mater Struct. 2022;45(4):1005-
1034.

8. Palmieri M, Zucca G, Morettini G, Landi L, Cianetti F. Vibra-
tion fatigue of FDM 3D printed structures: the use of frequency
domain approach. Materials. 2022;15(3):854.

9. Berto F, Lazzarin P. The volume-based strain energy density
approach applied to static and fatigue strength assessments of
notched and welded structures. Procedia engineering, Vol. 1:
No longer published by Elsevier; 2009:155-158.

10. Lazzarin P, Berto F. Some expressions for the strain energy in a
finite volume surrounding the root of blunt V-notches. Int J
Fract. 2005;135(1-4):161-185.

11. Mrozi�nski S. Energy-based method of fatigue damage cumula-
tion. Int J Fatigue. 2019;121:73-83.

12. Varvani-Farahani A, Haftchenari H, Panbechi M. An energy-
based fatigue damage parameter for off-axis unidirectional FRP
composites. Compos Struct. 2007;79(3):381-389.

13. European Committee for Standardization. Eurocode 3: Design
of steel structures – Part 1-9: Fatigue. (CEN). 2005;50:77.

14. Findley WN. A theory for the effect of mean stress on fatigue of
metals under combined torsion and axial load or bending.
J Eng Ind. 1959;81(4):301-305.

15. Hobbacher AF. The new IIW recommendations for fatigue
assessment of welded joints and components—a comprehen-
sive code recently updated. Int J Fatigue. 2009;31(1):50-58.

16. Kandil FA, Brown MW, Miller KJ. Biaxial low-cycle fatigue fail-
ure of 316 stainless steel at elevated temperatures. Metals Society;
1982.
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