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A B S T R A C T

Fatigue of structural components is a widely discussed subject on which extensive research is still being carried
out, both in the scientific and industrial communities. Fatigue damage still represents a major issue for both
metallic and non-metallic components, sometimes leading to unforeseen failures for in-service parts. Among all
the assessment methodologies, critical plane methods gained a lot of relevance, as they allow the identification
of the component’s critical location and the direction of early crack propagation. However, the standard method
employed for calculating critical plane factors is very time-consuming as it makes use of nested for/end loops
and, for that reason, it is usually applied in a research context, or when the critical areas of the component
are known. Very often, however, the critical regions cannot be identified, due to complex geometries, loads
or constraints, or the fatigue assessment has to be carried out with tight time scheduling, which is typical
of the industry. In this work, an efficient algorithm for calculating critical plane factors, useful to speed up
the fatigue assessment process, is presented. The algorithm applies to all critical plane factors that require
the maximization of a specific parameter based on stress and strain components or a combination of them.
The methodology maximizes the parameter utilizing tensor invariants and coordinates transformation law.
In order to validate the proposed methodology, without loosing generality, the Fatemi-Socie critical plane
factor was considered. The new algorithm was tested on different geometries (i.e. hourglass, notched and
welded joint geometries) under different loading conditions (i.e. proportional/non-proportional, uniaxial and
multiaxial loading) and showed a significant reduction in computation time respect the standard plane scanning
method, without any loss of solution accuracy.
1. Introduction

Material fatigue is a highly debated topic in the scientific and
industrial community [1–5]. Fatigue failure accounts for the majority
of in-service failures of components [6] and still represents a major
design challenge. Fatigue loading in real applications is characterized
by complexities such as variable amplitude, randomness and multiaxi-
ality [7]. All these factors, together with stress/strain gradients have
to be accounted for during the fatigue assessment of a part. In this
context, the use of finite element analyses (FEA) is a useful tool able
to consider the above-mentioned complex features [8–13]. Often the
problem is approached by modelling the critical region (i.e. considering
stress/strain gradients and multiaxiality) and by applying the correct
load history (i.e. considering variable amplitude or randomness). How-
ever, depending on the model and load conditions, simulations can be
time-consuming, both during the solution and post-processing phases,
particularly when the damage is calculated and several approaches can
be implemented. The damage can be evaluated in several ways, and
the different methods are commonly grouped in energy-based [14–17]
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and local or global stress/strain-based [18–26]. Strain-based methods
are more suitable for fatigue life assessments involving a low-cycle-
fatigue regime, while stress-based methods are more often employed
in the high-cycle-fatigue regime. Similarly, the energetic criteria are
subdivided into strain–energy-based criteria for low-cycle-fatigue appli-
cations, stress–energy-based criteria for high-cycle-fatigue applications,
while a combination of stress- and strain–energy is commonly em-
ployed for low- and high-cycle fatigue applications [27]. Especially in
the context of local damage models, critical plane (CP) factors gained
a lot of attention in the last decades [28–35]. The CP methodology
requires the calculation of a damage factor while evaluating the plane
that experiences the most extreme damage. This plane is called the
critical plane and represents the material orientation over which the
crack initially propagates. In this context, CP damage models are
normally use to evaluate the fatigue damage until the crack initi-
ation phase [36–39]. However, failure propagation analyses can be
performed as well based on CP [40–42].
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Especially for three-dimensional models with complex load history
and geometry, stress/strain tensors can be obtained directly through
the use of FE programs, with regard to every load step and every
node of the model. The standard CP search method requires, for a
specific node, to scan several planes in the three-dimensional space.
Each plane is identified by using two or more angles and this process
is commonly carried out through the use of nested for/end loops, that
although simple, require considerable computational time. The signifi-
cant computational cost is mainly related to the definition of an angular
increment during the iteration process, which has to be an optimum
between the accuracy of results and an acceptable solution time. The
iterative process is further slowed down as quantities unnecessary for
the definition of the damage parameter are sometimes evaluated on
each rotated plane.

Albeit the CP factor methodology provides information on both the
level of damage and the critical location and direction of crack prop-
agation, its implementation is therefore usually time-consuming. This
process may have to be applied to as many nodes as the model contains.
Although, in practice, only those nodes belonging to the critical region
of the component are provided to the algorithm. However, defining the
critical region a priori is not always possible, especially in the case of
models with very complicated geometry, load histories and constraints.

To the best of the authors’ knowledge very few research works were
already developed aimed at reducing the CP factors’ computational
time. Some methods are based on the analytical or quasi-analytical
calculation of parameters belonging to the considered damage factor
and the identification of the directions where this parameter or the
damage factor is maximized. Marques et al. [43] have developed an
algorithm applicable to spectral methods where CP factors or direction
of maximum stress variance are more efficiently tracked. This method
utilizes analytical formulas, calculating only those spectral parameters
related to the selected damage factor as a function of the rotation angles
and the spectral parameters in the initial condition. As it will be shown,
the method presented in this work belongs to this group.

Other methods pursue computational speed by calculating the CP
factor only in specific planes, avoiding the brutal-force procedure of
discretizing the entire CP space utilizing a fixed angular increment [44–
49]. These methods involve the discretization of a sphere of unit radius,
representing the infinite set of material plane orientations. Wenting-
mann et al. [50] have developed an algorithm to increase the speed
of CP detection based on the segmentation with quad elements of a
coarse Weber half sphere. In this case, the obtained result depends
on the performance parameters set by the user, which are meant to
give an optimal compromise between accuracy and computational cost.
Similarly, Sunde et al. [51] has developed an adaptive scheme for
densifying a triangular mesh around the elements where the greatest
damage has been noticed.

In other cases, the loading condition to which the specimen is
subjected to results in a reduced stress state (e.g. plane stress, plane
strain, etc.) that allows a purely analytical formulation of the damage
factor [52–54]. However, although this condition can often be found
on the surface of a component, it is always necessary to use a specific
reference frame orientation to obtain a reduced tensor configuration.

In this work, a methodology is presented to directly evaluate a CP
damage parameter based on stress and strain tensors invariants and
tensor coordinate transformation laws. The presented method may be
successfully applied to CP factors that require the maximization of a
specific parameter or a combination of them (e.g. 𝜎, 𝜏, 𝜀, 𝛾, 𝛥𝜎, 𝛥𝜏, 𝛥𝜀,
𝛾, 𝛥𝜎𝛥𝜏, 𝛥𝜀𝛥𝛾, etc.). The method can be applied for both proportional
nd non-proportional loading as the methodology has been developed
o account for a single load cycle (i.e. peak-to-valley or valley-to-peak).
n the case of a complex load history, it is sufficient to iteratively apply
he presented method to each successive peak-to-valley, valley-to-peak
air derived from a specific cycle counting formulation.

In the first part of the paper, the methodology is explained to-
ether with all the necessary theoretical background needed to un-
2

erstand the workflow. In the second part, some case studies are
Table 1
List of critical parameters on which the theory can be applied underlining the
parameters to be maximized on that plane.

Damage model Formula Constants Maximize

Fatemi-Socie [23] 𝛥𝛾
2

(

1 + 𝑘 𝜎𝑛,𝑚𝑎𝑥
𝑆𝑦

)

𝑘, 𝜎𝑦 𝛥𝛾

Smith-Watson–Topper [26] 𝜎𝑛,𝑚𝑎𝑥
𝛥𝜀
2

– 𝛥𝜀

Kandil–Brown–Miller [25] 𝛥𝛾
2
+ 𝑆𝜀𝑛,𝑚𝑎𝑥 𝑆 𝛥𝛾

Chen–Xu–Huang I [58]
𝛥𝜀
2

𝛥𝜎𝑛,𝑚𝑎𝑥
2

+ – 𝛥𝜀
+ 𝛥𝜏𝑛,𝑚𝑎𝑥

2
𝛥𝛾𝑛,𝑚𝑎𝑥

2

Chen–Xu–Huang II [58]
𝛥𝜀𝑛,𝑚𝑎𝑥

2
𝛥𝜎𝑛,𝑚𝑎𝑥

2
+ – 𝛥𝛾

+ 𝛥𝜏𝑛,𝑚𝑎𝑥
2

𝛥𝛾
2

Liu I [59] (𝛥𝜎𝛥𝜀)𝑚𝑎𝑥+ – 𝛥𝜎𝛥𝜀
+(𝛥𝜏𝛥𝛾)

Liu II [59] (𝛥𝜎𝛥𝜀)+ – 𝛥𝜏𝛥𝛾
+(𝛥𝜏𝛥𝛾)𝑚𝑎𝑥

presented, including an hourglass specimen, a notched specimen and
a welded component, concerning different loading conditions. For all
the presented test cases a comparison has been obtained between the
standard way of calculating CP factors (i.e. planes scanning) and the
methodology presented in this work, both from a solution accuracy
and computational-cost point of view. As it will be explained, the study
conducted within this article refers to damage parameters that allows
a closed-form solution of the CP factor calculation under all possible
loading conditions (i.e. proportional and non-proportional).

2. General background on CP factors evaluation

In the following, for the sake of clarity and without loosing gen-
erality, the Fatemi-Socie CP factor (𝐹𝑆) [23] will be considered as a
reference:

𝐹𝑆 =
𝛥𝛾
2

(

1 + 𝑘
𝜎𝑛,𝑚𝑎𝑥
𝑆𝑦

)

(1)

where 𝑘 is the material parameter found by fitting the uniaxial experi-
mental data against the pure torsion data, 𝛥𝛾 is the shear strain range,
𝜎𝑛,𝑚𝑎𝑥 is the normal stress acting on the plane where the shear strain
range is evaluated and 𝑆𝑦 is the material yield strength.

There are two possible applications based on the 𝐹𝑆 parameter as
depicted in Fig. 1; the first one (case A in Fig. 1), consists in maximizing
𝛥𝛾,1 the second one involves maximizing the whole 𝐹𝑆 parameter [56]
(case B in Fig. 1). This work deals with all the CP parameters that
can be reconducted to case A and in this case a closed-form solution
is always possible (i.e. for every load scenario), as it will be shown in
the following. To this aim, Table 1 provides some other CP methods
to which the presented methodology can be applied along with their
formulas, the material-dependent parameters and the parameters to be
maximized. Table 1 is not intended to be an exhaustive list, as the
purpose of this work is to present the methodology and not the CP
methods to which it can be applied to. For the parameters that can
be reconducted to case B (such as the second formulation of FS or the
Findley CP method [57]) a closed form solution is not possible and the
way a numerical approximate solution can be obtained will be part of
a future work.

Also the scheme of Fig. 1 is not intended to be exhaustive in
describing all the possibilities for calculating CP factors, however it can
represent a large majority of them.

1 i.e. as the original formulation of 𝐹𝑆 method [23,55].
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Fig. 1. Flowchart illustrating two key approaches for calculating a generic CP factor.
3. Standard plane scanning method for CP factor evaluation

In the following section, the standard method of plane scanning will
be explained by presenting a typical procedure adopted in the literature
for calculating the CP factor. Generally speaking, the fatigue strength of
the material is dependent on the time evolution of the stress and strain
tensors 𝝈(𝑡) and 𝜺(𝑡), given in Eq. (2). The stress and strain tensors can
be evaluated for every possible point in the volume of the component,
which can be approximated by nodes or integration points in finite
element models.

𝝈(𝑡) =
⎡

⎢

⎢

⎣

𝜎𝑥𝑥(𝑡) 𝜏𝑥𝑦(𝑡) 𝜏𝑥𝑧(𝑡)
𝜏𝑦𝑥(𝑡) 𝜎𝑦𝑦(𝑡) 𝜏𝑦𝑧(𝑡)
𝜏𝑧𝑥(𝑡) 𝜏𝑧𝑦(𝑡) 𝜎𝑧𝑧(𝑡)

⎤

⎥

⎥

⎦

, 𝜺(𝑡) =
⎡

⎢

⎢

⎢

⎣

𝜀𝑥𝑥(𝑡)
𝛾𝑥𝑦
2 (𝑡) 𝛾𝑥𝑧

2 (𝑡)
𝛾𝑦𝑥
2 (𝑡) 𝜀𝑦𝑦(𝑡)

𝛾𝑦𝑧
2 (𝑡)

𝛾𝑧𝑥
2 (𝑡) 𝛾𝑧𝑦

2 (𝑡) 𝜀𝑧𝑧(𝑡)

⎤

⎥

⎥

⎥

⎦

(2)

The tensors of Eq. (2) refer to a general reference system 𝑂𝑥𝑦𝑧 and
present a symmetry which bring to six the variable to be defined. The
stress and strain tensors may describe a general multiaxial loading
condition (i.e. fully populated) or simpler (i.e. not fully populated)
state of stress and strain, such as uniaxial or biaxial (e.g. plane stress,
plane strain) condition; Eq. (2) being the most general representa-
tion of a state of stress and strain in time-domain. However, respect
to the time dependency of the tensor, the load-history can present
different peculiarities. The stress components may be proportional
or non-proportional, meaning that the principal stress directions are
fixed in space, or vary with time, respectively. In addition, the load-
time history can present periodicity, with constant or variable (in a
deterministic or random way) amplitude. Using the tensors of Eq. (2),
it is possible to derive all values of stress and strain for each direction
in the space. Computationally this is accomplished in a discrete way
by defining a plane 𝛤 and its unit normal vector 𝐧, thus being able to
derive e.g., the stress normal to the plane 𝜎𝑛 and the shear strain 𝛾 on
that plane, as shown in Fig. 2a–b for the specific case of the Fatemi-
Socie CP factor. While iteratively rotating the 𝛤 plane by a fixed angular
step through the angles 𝜃 and 𝜓 , it is possible to obtain a precise
evaluation of stresses and strains in all directions.Fig. 2c shows the
spatial distribution of the unit vector’s tip 𝐧 caused by the step-based
rotation sequence.

4. Efficient method for the evaluation of CP factor and CP orien-
tation

In the following section, the efficient method will be explained by
presenting the underlying theoretical background. As commonly done
during fatigue assessments, the load-time history will be considered as a
discrete sequence of peaks and valleys instead of a continuous function
over time 𝑡. In this framework, the stress and strain tensors 𝝈𝑖 and 𝜺𝑖

related to the generic 𝑖th loading condition (representing a peak or a
3

valley) can be defined as

𝝈𝑖 =
⎡

⎢

⎢

⎢

⎣

𝜎𝑖𝑥𝑥 𝜏 𝑖𝑥𝑦 𝜏𝑖𝑥𝑧
𝜏 𝑖𝑦𝑥 𝜎𝑖𝑦𝑦 𝜏 𝑖𝑦𝑧
𝜏 𝑖𝑧𝑥 𝜏𝑖𝑧𝑦 𝜎𝑖𝑧𝑧

⎤

⎥

⎥

⎥

⎦

, 𝜺𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜀𝑖𝑥𝑥
𝛾 𝑖𝑥𝑦
2

𝛾 𝑖𝑥𝑧
2

𝛾 𝑖𝑦𝑥
2 𝜀𝑖𝑦𝑦

𝛾 𝑖𝑦𝑧
2

𝛾 𝑖𝑧𝑥
2

𝛾 𝑖𝑧𝑦
2 𝜀𝑖𝑧𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(3)

We can now identify two successive loading conditions as 𝑖 and 𝑖 + 1,
referring, for example, to a single sequence of peak and valley of the
given load-history. At this point, it is possible to define the strain tensor
range 𝜟𝜺 relative to the loading conditions 𝑖 and 𝑖 + 1, as the difference
between 𝜺𝑖 and 𝜺𝑖+1:

𝜟𝜺 = 𝜺𝑖 − 𝜺𝑖+1 (4)

Both strain tensors 𝜺𝑖 and 𝜺𝑖+1 have to be defined with respect to the
same reference system in order to calculate the strain tensor range;
this is what usually done by an FE-program when stress and strain
results are requested in a post-processing phase. By using the Mohr’s
representation (i.e., Fig. 3), the strain range tensor 𝜟𝜺 can be intended
as the strain variation in every spatial direction for the given specific
position into the model It is worth noting that the principal directions
of all the three conditions of Fig. 3 are, in general, different, and,
therefore, Fig. 3a cannot be obtained in graphical way, starting from
Figs. 3b–3c.

Tensor properties can now be used to obtain the principal strain
tensor range parameters (𝛥𝜀1, 𝛥𝜀2 and 𝛥𝜀3), defined as the eigenvalues
of the matrix 𝜟𝜺

𝜟𝜺 =

⎡

⎢

⎢

⎢

⎣

𝛥𝜀𝑥𝑥
𝛥𝛾𝑥𝑦
2

𝛥𝛾𝑥𝑧
2

𝛥𝛾𝑦𝑥
2 𝛥𝜀𝑦𝑦

𝛥𝛾𝑦𝑧
2

𝛥𝛾𝑧𝑥
2

𝛥𝛾𝑧𝑦
2 𝛥𝜀𝑧𝑧

⎤

⎥

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝛥𝜀1 0 0
0 𝛥𝜀2 0
0 0 𝛥𝜀3

⎤

⎥

⎥

⎦

(5)

As it can be observed from Fig. 3 the value of 𝛥𝛾𝑚𝑎𝑥 (i.e. identifiable
by an angle 2𝜔 = 𝜋

2 on the Mohr’s diagram) can be directly computed
using the principal strain variations as follows
𝛥𝛾𝑚𝑎𝑥
2

=
(𝛥𝜀1 − 𝛥𝜀3)

2
(6)

In order to compute the 𝐹𝑆 CP factor, it is necessary to evaluate the
normal directions to 𝛥𝛾𝑚𝑎𝑥 planes. To this regard, it is convenient to
define the principal directions (𝐧𝟏, 𝐧𝟐 and 𝐧𝟑) related to the principal
strain range parameters, which are defined as the eigenvectors of the
matrix 𝜟𝜺

𝐧𝟏 =
⎡

⎢

⎢

⎣

𝑛11
𝑛21
𝑛31

⎤

⎥

⎥

⎦

; 𝐧𝟐 =
⎡

⎢

⎢

⎣

𝑛12
𝑛22
𝑛32

⎤

⎥

⎥

⎦

; 𝐧𝟑 =
⎡

⎢

⎢

⎣

𝑛13
𝑛23
𝑛33

⎤

⎥

⎥

⎦

(7)

These directions define the principal coordinate system of the strain
tensor range 𝜟𝜺. It is therefore straightforward to define the rotation
matrix 𝑅𝑝 defining the rotation from the global reference frame to the
principal reference frame as

𝑅𝑝 =
⎡

⎢

⎢

𝑛11 𝑛12 𝑛31
𝑛21 𝑛22 𝑛32

⎤

⎥

⎥

(8)

⎣𝑛31 𝑛23 𝑛33⎦
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(

Fig. 2. Sample code for the evaluation of CP factor and CP orientation for the standard plane scanning method (a), plane configuration along with the most important parameters
(b) and illustration of spatial distribution of the versor 𝐧 normal to the plane 𝛤 .
Fig. 3. Graphical exemplification of tensors using Mohr representation: strain tensor range 𝜟𝜺 (a), strain tensor relative to the 𝑖𝑡ℎ loading condition 𝜺𝑖 (b) and strain tensor relative
to the (𝑖 + 1)𝑡ℎ loading condition 𝜺𝑖+1 (c).
T
With reference to Fig. 3, it is now possible to obtain the plane with
maximum shear strain range by rotating of an angle 𝜔 = 𝜋

4 about 𝐧𝟐
i.e., illustrated also in next Fig. 4). This rotation correspond to a 𝜋

2 ro-
tation in the Mohr’s diagram, with reference to the maximum diameter
circumference. More formally, it represents an intrinsic rotation about
the local 𝑦-axis and can be easily described by a rotation about 𝐧𝟐-axis
of the principal reference frame:

𝑅𝑦 =
⎡

⎢

⎢

⎣

cos( 𝜋4 ) 0 sin( 𝜋4 )
0 1 0

− sin( 𝜋4 ) 0 cos( 𝜋4 )

⎤

⎥

⎥

⎦

(9)

Then, the final rotation matrix 𝑅 describing the new reference frame
identifying 𝛥𝛾𝑚𝑎𝑥 plane is obtainable by a rotation matrices concatena-
tion:

𝑅 = 𝑅𝑝𝑅𝑦 =

⎡

⎢

⎢

⎢

⎣

𝑛11 cos(
𝜋
4 ) − 𝑛13 sin(

𝜋
4 ) 𝑛12 𝑛11 sin(

𝜋
4 ) + 𝑛31 cos(

𝜋
4 )

𝑛21 cos(
𝜋
4 ) − 𝑛32 sin(

𝜋
4 ) 𝑛22 𝑛21 sin(

𝜋
4 ) + 𝑛32 cos(

𝜋
4 )

𝑛31 cos(
𝜋
4 ) − 𝑛33 sin(

𝜋
4 ) 𝑛23 𝑛31 sin(

𝜋
4 ) + 𝑛33 cos(

𝜋
4 )

⎤

⎥

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

⎤

⎥

⎥

⎦

(10)
4

he above described procedure allows to compute 𝛥𝛾𝑚𝑎𝑥 and the CP
orientation directly by a single step. The reference frame 𝑂′𝑥′𝑦′𝑧′

defining 𝛥𝛾𝑚𝑎𝑥 plane is defined as

𝐱′ =
⎡

⎢

⎢

⎣

𝑟11
𝑟21
𝑟31

⎤

⎥

⎥

⎦

; 𝐲′ =
⎡

⎢

⎢

⎣

𝑟12
𝑟22
𝑟32

⎤

⎥

⎥

⎦

; 𝐳′ =
⎡

⎢

⎢

⎣

𝑟13
𝑟23
𝑟33

⎤

⎥

⎥

⎦

(11)

Due to the symmetry of the strain tensor range, the maximum stress
normal to the 𝛥𝛾𝑚𝑎𝑥 planes may occur along the 𝑥′− or 𝑧′-axis (see
Fig. 4) and can then be computed as follows, considering both the 𝑖th
and the 𝑖 + 1th load conditions.:

𝜎𝑛,𝑚𝑎𝑥 = max
(

max(𝐱′𝑇 𝝈𝒊𝐱′, 𝐳′𝑇 𝝈𝒊𝐳′),max(𝐱′𝑇 𝝈𝒊+𝟏𝐱′, 𝐳′𝑇 𝝈𝒊+𝟏𝐳′)
)

(12)

The above described method, which involves matrix operations in
relation to the strain tensor, cannot be applied to criteria, such as
that represented by the Findley parameter, which are defined by a
combination of the stress (or strain) tensor and a parameter, i.e. the
normal stress, acting on the critical plane (these CP parameters belong
to case B in Fig. 1). For those cases the Mohr’s representation cannot

be pursued and a numerical approach has to be developed.
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Fig. 4. Strain tensor rotations represented through the infinitesimal cubic material element; general reference system resulting from the export of results from the FE-analysis (1),
principal reference system (2) and rotated reference system to obtain the 𝛥𝛾𝑚𝑎𝑥 (3).
5. Methods benchmarking

With the purpose of comparing 𝛥𝛾𝑚𝑎𝑥 and CP direction between
he above described method and the standard spatial span iteration of
ngles, it is necessary to obtain a consistent angle triplet between the
wo above mentioned methodologies.

In this work the spatial span was described by intrinsic rotations
bout the axes 𝑥𝑦𝑧 described by the Tait–Bryan angles 𝜃, 𝜓, 𝛼
espectively, through the rotation matrix 𝑅𝑥𝑦𝑧(𝜃, 𝜓, 𝛼) [60]. The first
wo rotations about 𝑥-axis and 𝑦-axis identified the plane and the third

rotation about 𝑧-axis identified the 𝛥𝛾 direction on that plane. It is
orth noting that the chosen rotation sequence 𝑥𝑦𝑧 represent just one
f the possible rotation sequences that can be used. In order to obtain
he angles given by the coordinate transformation from the absolute
o the rotated frame it is necessary to match the rotation matrices
= 𝑅𝑥𝑦𝑧. At this point it is possible to derive the relationships between

ngles and the matrix 𝑅 coefficients as presented in Eq. (13)

11 = cos(𝜓) cos(𝛼), 𝑟12 = cos(𝜓) sin(𝛼), 𝑟13 = sin(𝜓),

𝑟23 = sin(𝜃) cos(𝜓), 𝑟33 = cos(𝜃) cos(𝜓), 𝑟211 + 𝑟
2
12 = cos(𝜓)

(13)

Starting from Eq. (13) it is straightforward to derive the angles 𝜃, 𝜓, 𝛼,
as shown in Eqs. (14)–(16)

𝜃 = arctan2(−𝑟23, 𝑟33) (14)

𝜓 = arctan2(𝑟13,
√

𝑟211 + 𝑟
2
12) (15)

𝛼 = arctan2(−𝑟12, 𝑟11) (16)

he angles presented in Eqs. (14)–(16) will later be used in Section 7
or direct comparison with the standard method.

It should be clear from the previous discussion, that the efficient
ethod is based on the evaluation of a tensor range, starting from two
ifferent loading conditions, representing a fatigue cycle in the stress
ime-history. Once the time-history is known, even in the presence
f material plasticity, load non-proportionality or residual stresses,
he method can be directly applied. In practice, the method requires
he identification of the two load configurations defining a fatigue
ycle; to make the method viable for generic load histories, it must be
teratively applied to successive cycles. All the assumptions of material
lasticity, load non-proportionality and residual stresses will simply
ffect the values of the stress and strain tensors at those identified load
onfiguration steps.

. Material and test cases

In this section three case studies will be presented and discussed.
he model geometries and loading conditions were chosen in such a
ay to analyse most of the existing structural problems, thus providing

eliable and exhaustive results. An hourglass specimen, a notched
5

Table 2
Elastic-perfectly-plastic material properties implemented in the hourglass and notched
specimen FE-models.

Young’s modulus,
𝐸 (MPa)

Poisson’s
ratio, 𝜈 (–)

Yield strength,
𝜎𝑦 (MPa)

Tangent modulus,
𝐸𝑇 (MPa)

210 000 0.3 360 2000

Table 3
Elastic–plastic material properties implemented in the welded joint FE-model.

Young’s modulus, 𝐸 (MPa) Poisson’s ratio, 𝜈 (–)

210 000 0.3

Total strain, 𝜀 (–) Stress, 𝜎 (MPa) Total strain, 𝜀 (–) Stress, 𝜎 (MPa)

0 0 0.00243 325
0.0004761 100 0.00295 350
0.000629 125 0.00361 375
0.000762 150 0.00445 400
0.000904 175 0.00551 425
0.001060 200 0.00685 450
0.001237 225 0.00851 475
0.001448 250 0.01058 500
0.001705 275 0.01311 525
0.00202 300 0.01994 575

specimen and a (pipe-to-plate) welded joint were considered. The
hourglass and notched specimens were loaded under tensile, torsion
and combined tensile–torsion loading, while the welded joint under
bending, torsion and combined bending–torsion loading. In all the three
cases elastic–plastic material properties were implemented in the finite
element simulations, thus to verify the applicability of the method even
under material-plasticity. Fig. 5a shows the technical drawing of the
hourglass specimen whose geometry was based on the ASTM E466 with
a minimum diameter of 12mm. Fig. 5b reports the notched specimen
geometry, described by a notch radius of 0.2mm and a minimum
diameter of 16mm. Fig. 5c shows the welded joint geometry composed
by a tube, a reinforcement circular plate and a quadrangular base plate.
The weld bead of interest for our work was the one between the tube
and the base plate. Both the notched specimen and the welded joint
components have already been part of a research project carried out
by the same authors, where the fatigue endurance of such components
have been studied under different loading conditions and in presence
of residual stresses [10–12,61–64].

6.1. Finite element analysis

All the above mentioned components were studied by means of FE-
analyses using the second release of the software Ansys©2021. Static
structural analysis were performed, under the assumption of small
displacements. The material considered for all three case studies was
a structural steel S355. Material non-linearity was introduced in the
analysis by assuming a bilinear elastic–plastic material behaviour for
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Fig. 5. Finite element model (a) and technical drawing (b) of the hourglass specimen; finite element model (c) and technical drawing (d) of the notched specimen; finite element
model (e) and technical drawing (f) of the welded joint; the FE-models present the position on which the 𝛥𝛾 resulted the maximum under the different loading conditions.
the hourglass and notched specimen, as reported in Table 2 and a
multi-linear elastic–plastic material behaviour in the case of the welded
joint, as shown in Table 3. The material properties were obtained from
Tsavdaridis et al. [65] and Lopez and Fatemi [66] in the case of bilinear
and multi-linear cyclic material behaviour, respectively .

The FE-models were all three-dimensional and employed 3D struc-
tural brick elements (i.e. SOLID186 in Ansys) with 20 nodes and
quadratic shape functions, with the exception of the hourglass and
notched specimens loaded in traction/compression, in which the loads
and constraints allowed the use of an axisymmetry assumption; in this
case, 2D structural plane elements (i.e. PLANE183 in Ansys) with 8
nodes and quadratic shape function were employed. Every node has
6

three degrees of freedom (i.e. the displacements in the three spatial
directions 𝑥, 𝑦 and 𝑧) if three-dimensional elements were employed,
while two degrees of freedom (i.e. the displacements in the two spatial
directions defining the working plane 𝑥 and 𝑦) for the two-dimensional
elements.

The hourglass specimen mesh was modelled with 336 134 nodes
and 81 018 elements for the three-dimensional geometry and 24 276
nodes and 7991 elements for the two-dimensional geometry. The three-
dimensional notched specimen model employed a submodeling analysis
in order to better optimize the mesh in the notch region. A number of
123 170 nodes and 29 234 elements for the three-dimensional model
and 351 974 nodes and 84,900 elements for the submodel were used,
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Table 4
Load steps combination used during simulations with 𝐹 referring to the applied force and 𝑀𝑡 referring to the torque shown in Fig. 5.

Load type Hourglass specimen Notched specimen Welded joint

Load step n.1 Load step n.2 Load step n.1 Load step n.2 Load step n.1 Load step n.2

Case 1 𝐹 =19 kN 𝐹 =76 kN 𝐹 =5.3 kN 𝐹 =53 kN 𝐹1 =−5.7 kN 𝐹1 =5.7 kN
𝑀𝑡 =0Nm 𝑀𝑡 =0Nm 𝑀𝑡 =0Nm 𝑀𝑡 =0Nm 𝐹2 =−5.7 kN 𝐹2 =5.7 kN

Case 2 𝐹 =0 kN 𝐹 =0 kN 𝐹 =0 kN 𝐹 =0 kN 𝐹1 =−15 kN 𝐹1 =15 kN
𝑀𝑡 =10Nm 𝑀𝑡 =100Nm 𝑀𝑡 =10Nm 𝑀𝑡 =80Nm 𝐹2 =15 kN 𝐹2 =−15 kN

Case 3 𝐹 =140 kN 𝐹 =0 kN 𝐹 =31.8 kN 𝐹 =0 kN 𝐹1 =3.4 kN 𝐹1 =11 kN
𝑀𝑡 =0Nm 𝑀𝑡 =100Nm 𝑀𝑡 =0Nm 𝑀𝑡 =80Nm 𝐹2 =3.4 kN 𝐹2 =−11 kN
Table 5
Graphical overview of the main normal and shear stress components pattern over load steps.

Load type Hourglass specimen Notched specimen Welded joint

Case 1

Case 2

Case 3
respectively. With regard to the two-dimensional notched specimen
model 38 897 nodes and 12 888 elements were used in the FEA. A
submodel analysis was used for the welded joint too, thus to better
describe the stress and strain state in the weld notches (i.e. weld toes
and weld root). The submodel details a model slice of 54° opening
angle, and includes part of the base plate, part of the pipe, and the
whole section of the weld bead. In this case 96 420 nodes and 97 728
elements and 155 454 nodes and 35 408 elements were used in the
model and submodel, respectively. The mesh size reported above for all
FE-models was achieved after a convergence analysis. As a convergence
criterion, a difference lower than 5% was attained on the maximum von
Mises stress in the critical regions of the FE-models (i.e. the area where
the stress and strain values were obtained for the successive analysis).

The different loading conditions, both proportional and non propor-
tional, where obtained by applying forces, moments or a combination
of them together with fixed supports on the appropriate surfaces, as
exemplified in Fig. 5. For the hourglass and notched specimen the
cylindrical surfaces were used for applying the boundary conditions,
while the top tube surface and the plate holes were used in the case of
the welded joint. The load sequences reported in Table 4 were applied
and include two proportional loading (i.e. axial/bending and torsion,
respectively) conditions and a non proportional loading condition, with
a 90° phase angle between bending and torsion load. Each column of the
table reports the combination of forces/moment applied to a specific
specimen geometry (i.e. hourglass specimen, notched specimen and
welded joint) in a particular loading condition (i.e. tensile/bending, tor-
sion and combined tensile/bending–torsion loading). In the following
the loading conditions will be designated as:

• Proportional loading case 1, tensile loading for hourglass and
notched specimen geometries and bending loading for the welded
joint;

• Proportional loading case 2, torsional loading for all specimen
7

geometries;
• Non proportional loading case 3, combined out-of-phase tensile
and torsion loading for hourglass and notched specimen geome-
tries and combined out-of-phase bending and torsion loading for
the welded joint geometry.

The load conditions that were considered are intended to exemplify the
majority of in-service loads that can be encountered by the analyst.
The maximum normal and tangential stress components resulting from
the loads in Table 4 are presented in Table 5 consistently for each
combination of geometry and load with regard to the reference frame
presented in Fig. 5. Especially in the case of fatigue investigations
under non-proportional loading conditions it may become challenging
the identification of two subsequent steps in the load-history needed to
compute the parameter range. However, non-proportional cycle count-
ing methods can be applied such as the well-known Wang–Brown [67,
68] based on a modified equivalent strain theory, or the recent one
proposed by Janssens [69]. On the other side, it is worth noting that
the well known Bannantine and Socie’s [70] multiaxial cycle counting
method cannot be applied. In fact, the Bannantine and Socie’s method
apply the standard cycle counting (e.g. rainflow) to the projected
normal or shear strain on the failure plane that, therefore, requires to be
identified based on an iterative process of damage calculation through
all possible plane orientations, by the usual scanning process.

For the analysed cases of Table 4, loads were defined in such a
way that all the components critical locations behave elastically during
the first load step, while material plasticity occurs during the second
load step if tensile/bending or torsion loading were applied, separately.
On the contrary, the material undergoes plasticity in the critical nodal
locations, during both load steps, when the components were loaded
under combined tensile–torsion for notched and hourglass specimens
or under combined bending–torsion for the welded joint.

6.2. Scripts implementation

The calculation of the Fatemi-Socie CP factor was carried out by
®
implementing the formulas in a Matlab script, both for the standard



International Journal of Mechanical Sciences 242 (2023) 107974A. Chiocca et al.
Fig. 6. Sample code for the evaluation of CP factor and CP directions for the efficient method (a) and main code parameters represented through the infinitesimal cubic material
element (b).
o
e

𝑃

iterative procedure and the proposed method, based on the shear strain
tensor range. As already stated, the standard method involves nested
for/end loops, which results in a massive slowdown of the calculation.
The computational speed is mainly dependent on the angular step used
during the loops. For our case, an angular step of 1° was used to
perform the spatial scan of half sphere described by the angular ranges
0 < 𝜃 < 𝜋 and 0 < 𝜓 < 𝜋. The angular step of 1° provides an optimum
between computational cost and accuracy as it yields to CP factor value
convergence with an error lower than 1% [48,49].

The material-dependent parameters 𝑘 and 𝜎𝑦 were assumed with
values of 0.4 and 360MPa respectively. The 𝑘 was considered constant
although recent works has identified a dependency on the number of
cycles to failure of the material 𝑁𝑓 [71–73]. However, as the primary
purpose of our work was the comparison between the two methods, the
introduction of a variable 𝑘 would not have altered the comparative
result but only increased the complexity of algorithm implementation.
The codes which implement the CP calculation methods have common
parts, such as the data import from the finite element analysis and the
write-out of the final results. The calculation times presented in the
next section do not include the plot generation, but only the necessary
operations to obtain the 𝛥𝛾 and the corresponding 𝐹𝑆 value. A concise
script-flowchart presenting the efficient methodology is provided in the
Fig. 6 as a support to the theoretical discussion given in Section 4. It is
worth noting that the occurrence of an initial state of stress (i.e. residual
stresses) would not invalidate the method presented above since only
the stress and strain tensors during the two considered load steps are
required for the CP evaluation. An initial state of stress would only
change the values inside the considered tensors leaving unchanged the
methodology to be applied.

7. Results and discussion

The following section provides an overview and discussion of the
results concerning the CP factors calculated by means of the standard
and the efficient method. The formulas introduced in Section 4 compute
the required value explicitly, thus giving a mathematically correct solu-
tion and not a numerical approximation. This is visible in the results of
8

Table 6, where 𝛥𝛾𝑚𝑎𝑥 values calculated with the two methods have been
compared. The percentage relative difference (𝑅𝑒𝑙.𝐷𝑖𝑓𝑓%) obtained
comparing the results has always been found to be smaller than 0.3%,
which brings the error to be mainly numerical. The difference, although
small, may be due to the numerical approximation of the standard
method, which requires a finite angular step to determine the maximum
damage value.

Similarly, Table 7, shows the comparison results of the 𝐹𝑆 values,
obtained for the same CP of Table 7 determined by maximizing 𝛥𝛾.
In this case, slightly larger differences were found (contained below
1.3%), which can be attributed to approximations in 𝜎𝑛 values obtained
by the scanning plane procedure. In this case a reduction in the angular
range was found to lead to a large improvement in the results but with
a large increase in the time required for the solution. For this reason
the angular step was kept constant at a value of 1° thus admitting an
error of about 1%.

The improvement in computation time is shown in Table 8. All
the scripts were run in Matlab® environment on a 11th Gen Intel(R)
Core(TM) i7 with 15 GB of RAM available and 4 cores. The 𝑃𝐼
parameter of Eq. (17) was used to indicate a performance index. The
parameter 𝑃𝐼 is 100% when the efficient method time is zero or the
standard method time is infinite and is 0% when there is no reduction
in the computation time. This parameter represents the performance
improvement in terms of time to evaluate the script. As it can be
observed, a major time reduction was achieved with 𝑃𝐼 parameter
always greater than 94.5% since the majority of for/end loops were
mitted in the proposed efficient method; the stress and strain data for
ach load cycle have to be obtained only once.

𝐼 =
(

1 −
𝑡𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡
𝑡𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

)

(17)

The computation time was reduced by an order of magnitude (i.e., from
≈ 7 s to ≈ 0.3 s) while implementing a non-optimized code on Matlab®;
moving toward lower-level programming languages and by improv-
ing the code a further reduction of the computational time can be
reasonably expected.

The comparison between the two methods in terms of CP orientation
is shown in Fig. 7 with respect the hourglass specimen, Fig. 8 with
respect to the notched specimen and Fig. 9 with respect to the welded
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Fig. 7. Periodic solution of 𝛥𝛾 resulting from the spatial span of angles 𝜃, 𝜓 and for a fixed value of 𝛼 for tensile loading (a), torsional loading (b) and tensile–torsional loading
(c) of the hourglass specimen geometry. The location of the 𝛥𝛾𝑚𝑎𝑥 is shown in red: 𝜃 = −1.5708, 𝜓 = −0.7854, 𝛼 = 0 (a), 𝜃 = −1.1521, 𝜓 = 0, 𝛼 = 0 (b), 𝜃 = 1.9895, 𝜓 = 1.0384, 𝛼 = 0
(c).
Fig. 8. Periodic solution of 𝛥𝛾 resulting from the spatial span of angles 𝜃, 𝜓 and for a fixed value of 𝛼 for tensile loading (a), torsional loading (b) and tensile–torsional loading
(c) of the notched specimen geometry. The location of the 𝛥𝛾𝑚𝑎𝑥 is shown in red: 𝜃 = −1.5708, 𝜓 = −0.9311, 𝛼 = 0 (a), 𝜃 = 1.5708, 𝜓 = 0, 𝛼 = 1.5706 (b), 𝜃 = 1.2674, 𝜓 = 0.0033,
𝛼 = 1.5763 (c).
Table 6
Comparison of 𝛥𝛾𝑚𝑎𝑥 values between the efficient method and the standard one.
𝛥𝛾𝑚𝑎𝑥 comparison

Load type Hourglass specimen Notched specimen Welded joint

Efficient Standard 𝑅𝑒𝑙.𝐷𝑖𝑓𝑓 .% Efficient Standard 𝑅𝑒𝑙.𝐷𝑖𝑓𝑓 .% Efficient Standard 𝑅𝑒𝑙.𝐷𝑖𝑓𝑓 .%

Case 1 0.1157 0.1158 0.086% 0.01213 0.01213 0% 0.00463 0.00463 0%

Case 2 0.01426 0.01427 0.021% 0.001465 0.001465 0% 0.00434 0.00434 0%

Case 3 0.00383 0.00382 0.26% 0.00206 0.00206 0% 0.00360 0.00360 0%
joint. A graphical comparison allows a clearer comprehension of the
subject in this case. Figs. 7a–9a depict the tensile loading case for
the hourglass and notched specimens and the bending loading for the
welded joint. Figs. 7b–9b, instead, present the torsional loading case
and Figs. 7c–9c, the combined loading case. In all scenarios a very
9

good agreement was found regarding the CP orientation identified by
the new method, represented by a red dot in all the Figures. All the red
dots find their positioning precisely on the maxima of the coloured plots
representing the 𝛥𝛾 values deriving from the spatial span. Evidently, the
solution found by the proposed efficient method is unique although the
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Fig. 9. Periodic solution of 𝛥𝛾 resulting from the spatial span of angles 𝜃, 𝜓 and for a fixed value of 𝛼 for bending loading (a), torsional loading (b) and bending–torsional loading
(c) of the welded joint. The location of the 𝛥𝛾𝑚𝑎𝑥 is shown in red: 𝜃 = 1.5708, 𝜓 = −0.9419, 𝛼 = 0 (a), 𝜃 = 0, 𝜓 = 0, 𝛼 = −1.0991 (b), 𝜃 = 0.9514, 𝜓 = −0.7822, 𝛼 = −2.9964 (c).
Table 7
Comparison of 𝐹𝑆 values between the efficient method and the standard one.
𝐹𝑆 comparison

Load type Hourglass specimen Notched specimen Welded joint

Efficient Standard 𝑅𝑒𝑙.𝐷𝑖𝑓𝑓 .% Efficient Standard 𝑅𝑒𝑙.𝐷𝑖𝑓𝑓 .% Efficient Standard 𝑅𝑒𝑙.𝐷𝑖𝑓𝑓 .%

Case 1 0.1608 0.1598 0.62% 0.01556 0.01547 0.58% 0.00627 0.00627 0%

Case 2 0.01426 0.01427 0.021% 0.001465 0.001465 0% 0.00434 0.00434 0%

Case 3 0.00716 0.00726 1.3% 0.00324 0.00324 0% 0.00481 0.00482 0.2%
Table 8
Comparison of computational cost between the efficient method and the standard one.

Computational time comparison

Load type Hourglass specimen Notched specimen Welded joint

Efficient Standard 𝑃𝐼 Efficient Standard 𝑃𝐼 Efficient Standard 𝑃𝐼

Case 1 𝑡 = 0.348 s 𝑡 = 7.270 s 95.2% 𝑡 = 0.364 s 𝑡 = 7.006 s 94.8% 𝑡 = 0.317 s 𝑡 = 7.249 s 95.6%

Case 2 𝑡 = 0.332 s 𝑡 = 7.247 s 95.4% 𝑡 = 0.315 s 𝑡 = 7.282 s 95.6% 𝑡 = 0.340 s 𝑡 = 7.264 s 95.3%

Case 3 𝑡 = 0.342 s 𝑡 = 7.151 s 95.2% 𝑡 = 0.396 s 𝑡 = 7.307 s 94.5% 𝑡 = 0.359 s 𝑡 = 7.284 s 95.0%
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urfaces often present periodic patterns in the studied angular range.
hose pattern can clearly been recognized considering the loading case
nd the symmetry of the stress tensor; indeed the solution periodicity
nformation can be recovered by simple consideration on the Cauchy’s
tress tensor.

As a final consideration on the method, it should be considered that
he implementation of the described method can be further optimized
rom a computational-time point of view through a more fine-tuned
rogramming which, however, is not part of this work. For this reason,
he run-times shown in Table 8 may not be the optimal ones achievable.
t is therefore up to the interested reader to implement the method on
he most convenient coding programme. As a matter of fact, the model
mplementation is straightforward as it only makes use of basic tensor
athematics.

. Conclusions

The presented work was intended to illustrate a comprehensive
ethod to speed up the computation of CP factors; this can be of
articular interest for industrial applications, or whenever a tight time
chedule is imposed. The methodology is based upon the use of stress
10
nd strain tensor invariants and coordinates transformation law, and
t was implemented in a ready to use Matlab® script. Different case
tudies have been presented in order to provide a significant variety of
omponent geometry and loading conditions. The Fatemi-Socie critical
lane factor has been used as a case study damage parameter. Based
n the performed analyses and the results obtained, the following
onclusions can be drawn:

• the method is rather general and can be applied to several crit-
ical plane factors in addition to the one presented (to all CP
parameters that can be classified as case A in Table 1);

• the method can be implemented in case of uniaxial, multiaxial,
proportional or non-proportional loading conditions and even in
presence of residual stresses;

• the method allows a significant reduction in computation time,
with respect to the standard scanning plane method, as it avoids
the use of many nested for/end loops; a reduction in computation
time always greater of 94.5% on a single node was obtained with
reference to the examined test cases; such a reduction in compu-
tation time will potentially enable easier and more effective use
of CP methods, even in industrial applications;
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• compared with the standard plane scanning method, the proposed
method provides a closed form solution for the critical plane and,
consequently, for the damage parameter;

• the method is easy to operate and can be implemented in a variety
of codes since it makes use of basic tensor math; the extension to
other CP factors turns out to be fairly straightforward, as well.

For the evaluation of damage factors a reduced computation time,
uring the post-processing phase, is crucial as it allows a more complete
nd detailed evaluation of the studied model. In the present work, the
ethod was applied only to those cases where an analytical solution

s possible (i.e. case A of Fig. 1). However, in a similar fashion, it is
lso possible to tackle the problem of evaluating CP factors based on
ore complex formulation, for which a closed form solution cannot be

btained (i.e. case B of Fig. 1); this will be the subject of future works.
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