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Abstract

The peak stress method (PSM) allows a rapid application of the notch stress

intensity factor (NSIF) approach to the fatigue life assessment of welded struc-

tures, by employing the linear elastic peak stresses evaluated by FE analyses

with coarse meshes. Because of the widespread adoption of 3D modeling of

large and complex structures in the industry, the PSM has recently been

boosted by including four-node and ten-node tetrahedral elements of Ansys

FE software, which allows to discretize complex geometries. In this paper, a

Round Robin among eleven Italian Universities has been performed to cali-

brate the PSM with seven different commercial FE software packages. Several

3D mode I, II and III problems have been considered to investigate the influ-

ence of (i) FE code, (ii) element type, (iii) mesh pattern, and (iv) procedure to

extrapolate stresses at FE nodes. The majority of the adopted FE software

packages present similar values of the PSM parameters, the main source of dis-

crepancy being the stress extrapolation method at FE nodes.
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1 | INTRODUCTION

In the context of the fatigue design of welded compo-
nents, design codes and recommendations1,2 suggest
several methods, namely the nominal stress,3,4 the
structural hot-spot stress,3–7 the notch stress3,4,8–17 and
the Linear Elastic Fracture Mechanics (LEFM)3,13,15,17–20

approaches. Additionally, criteria based on local parame-
ters, such as stress, strain or strain energy, proved to be
reliable for fatigue design of welded components, espe-
cially when complex welded details or load conditions
are considered.10,21–23 Among these, the most widely
adopted are based on Notch Stress Intensity Factors
(NSIFs),24–27 averaged strain energy density (SED),13,26–31

critical plane concepts21,22,32 and the Theory of Critical
Distances (TCD).9,22,33,34 The NSIF-based approach
assumes the worst-case geometry both at the weld toe
and at the weld root of the joint, which are idealized as
sharp V-notches having null tip radius (ρ = 0) and open-
ing angles of 135� and 0�, respectively, as highlighted in
Figure 1A. The NSIFs permit to quantify the intensity of
the singular, linear elastic stress fields close to a sharp V-
notch tip. As an example, Figure 1B shows the mode I, II,
and III local stress components acting at the weld toe of a
partial-penetration tube-to-flange welded joint subjected
to a combined bending and torsion loading. Williams36

first derived analytically the singular, linear elastic stress
field ahead of a sharp V-notch tip under mode I and II
loadings. Afterwards, Qian and Hasebe37 determined
the singular stress distributions due to sharp V-notches
subjected to mode III loading. Later on, Gross and
Mendelson38 defined the mode I, II and III NSIF-terms
by means of Equations (1)–(3), respectively:

K1 ¼
ffiffiffiffiffi
2π

p � lim
r!0

σθθð Þθ¼0 � r1�λ1
� � ð1Þ

K2 ¼
ffiffiffiffiffi
2π

p
� lim
r!0

τrθð Þθ¼0 � r1�λ2
� � ð2Þ

K3 ¼
ffiffiffiffiffi
2π

p � lim
r!0

τθzð Þθ¼0 � r1�λ3
� � ð3Þ

In previous expressions the terms λ1, λ2, and λ3 repre-
sent the stress singularity degrees,36,37 which depend on

the V-notch opening angle 2α. Values of λ1, λ2 and λ3
referring to some notch opening angles, that is, 2α = 0�,
90�, 120�, and 135�, are listed in Table 1. It is worth men-
tioning that the mode II stresses are not singular for
notch opening angles 2α > 102� as demonstrated in
Refs.,36,39 which very often simplifies the analysis at the
weld toe where 2α = 135�. Finally, the stress components
in Equations (1)–(3) are referred to a cylindrical reference
system (see Figure 1B) centered at the V-notch tip, where
the z direction is tangent to the notch tip line and the
θ-direction originates from the notch bisector line,
r being the radial coordinate. Accordingly, σθθ, τrθ, and
τθz are calculated ahead of the notch tip (r ! 0) and
along the notch bisector line (θ = 0).

NSIF-parameters have been widely adopted in the lit-
erature to correlate the fatigue strength of arc-welded
joints undergoing uniaxial24,40–42 or multiaxial25 loading
conditions. Nevertheless, it should be noted that the
calculation of NSIF-terms on the basis of the results of
numerical analyses shows a major drawback in engineer-
ing applications, since very refined FE meshes (finite ele-
ment size on the order of 10�5 mm were adopted for 2D
numerical analyses in previous reference24) are required
in order to apply Equations (1)–(3). When dealing with
three-dimensional, complex and large-scale notched
structures, both the solution of the FE model and the post-
processing of numerical results could be even more time-
consuming. To overcome this drawback, an engineering
and rapid technique, the peak stress method (PSM), has
been proposed to speed up the calculation of the NSIF-
terms by adopting coarse FE analyses, the element size
being some orders of magnitude larger than that required
to apply Equations (1)–(3). The PSM takes inspiration
from the contribution by Nisitani and Teranishi,43 who
proposed a technique to readily estimate the mode I Stress
Intensity Factor (SIF) of a crack propagating from an ellip-
soidal cavity. The PSM has been first justified theoretically
and later on extended to allow the rapid calculation also of
the NSIF relevant to sharp and open V-notches under
mode I44,45, the SIF of cracks under mode II46 and, finally,
the NSIF of open V-notches under mode III.47

Practically, the PSM is a numerical tool, which takes
advantage of the opening, in-plane shear and out-of-
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plane shear peak stresses evaluated from a linear elastic
FE analysis with coarse mesh (see an example in
Figure 2) to rapidly estimate the NSIF-terms K1, K2,
and K3, respectively, according to the following
expressions44,46,47:

K1 ffiK�
FE �σθθ,θ¼0,peak �d1�λ1 ð4Þ

K2 ffiK��
FE � τrθ,θ¼0,peak �d1�λ2 ð5Þ

K3 ffiK���
FE � τθz,θ¼0,peak �d1�λ3 ð6Þ

where σθθ,θ = 0,peak, τrθ,θ = 0,peak and τθz,θ = 0,peak are the
peak stresses calculated with respect to a local cylindrical
coordinate system as above, which must be centered at

the node located at the V-notch tip. The subscript
“θ = 0” defines the direction along which peak stresses
have to be calculated; as an example σθθ,θ = 0,peak

represents the opening stress acting normal to the notch
bisector, as highlighted in Figure 2. The parameter d is
the average finite element size adopted by the free mesh
generation algorithm available in the FE code. Finally,
K*

FE, K
**
FE, and K***

FE are coefficients which must be
calibrated to account for48 (i) the element type and
integration scheme; (ii) the free mesh pattern and
(iii) the procedure adopted by the FE code to extrapolate
the stresses at nodes.

The PSM according to Equations (4)–(6) has been cal-
ibrated in previous investigations by employing several
2D and 3D element types and commercial FE codes.
First, the parameters K*

FE, K
**
FE, and K***

FE have been
calibrated by using 2D, four-node plane quadrilateral ele-
ments of Ansys Mechanical APDL element library.44,46,47

Subsequently, a Round Robin Project was run48 to cali-
brate the coefficients K*

FE and K**
FE for 2D, four-node

plane quadrilateral elements available in six commercial
FE packages other than Ansys Mechanical APDL,
namely Abaqus, Straus7, MSC Patran/Nastran, LUSAS,
HyperMesh/OptiStruct/HyperView, and HyperMesh/LS-
Dyna/HyperView. A further development consisted in
extending the PSM to 3D, eight-node brick elements,45 by
taking advantage of the submodeling technique of

FIGURE 1 (A) Partial-penetration tube-to-flange welded joint under combined bending and torsion fatigue loading. The sharp V-notch

opening angle 2α is typically 0� at the weld root and 135� at the weld toe. (B) Cylindrical reference system (r,θ,z) centered at the weld toe

and singular stress components. See also previous work35

TABLE 1 Parameters depending on the notch opening angle 2α

2α (�) λ1
a λ2

a λ3
b

0 0.500 0.500 0.500

90 0.545 0.909 0.667

120 0.616 — 0.750

135 0.674 — 0.800

aValues derived from Williams.36

bValues derived from Qian and Hasebe.37
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Ansys® FE software. More precisely, when considering a
complex 3D welded structure, first, a main model having
a free-mesh of ten-node tetrahedral elements is solved
and then a submodel of the critical region is meshed with
a regular pattern of eight-node brick elements and
eventually analyzed with the PSM.

Given the ever increasing adoption of three-
dimensional modeling of large-scale complex structures
in the industry, the 3D PSM has recently been improved
by calibrating coefficients K*

FE, K**
FE, and K***

FE for
four-node and ten-node tetrahedral elements49,50 of
Ansys Mechanical APDL element library. These finite
element types allow to easily discretize complex three-
dimensional geometries and to apply the PSM directly to
the free-meshed main model, making the submodel with
regular mesh pattern unnecessary. Nevertheless, mesh
patterns consisting of tetrahedral elements are typically
irregular, in the sense that each node belonging to the
notch tip line can be shared by a different number of ele-
ments and have significantly different sizes and shapes
(see for example next Figure 10). As a consequence, the
peak stress components could vary along the notch tip
line, even in cases where the NSIF-parameters are con-
stant. To smooth the peak stress distribution along the
notch tip line, the average peak stress has been

introduced and it was defined as the moving average of
peak stresses evaluated on three adjacent vertex nodes.49

For example, the average peak stress at node n = k is
calculated as follows:

σij,peak,n¼k ¼ σij,peak,n¼k-1þσij,peak,n¼kþσij,peak,n¼kþ1

3

����
n¼node

ð7Þ

Therefore, the PSM-coefficients K*
FE, K

**
FE, and K***

FE

have been calibrated in previous works49,50 by adopting
four-node and ten-node tetrahedral elements and by
input the average peak stress components according to
Equation (7) into Equations (4)–(6), that is, σθθ,θ¼0,peak,
τrθ,θ¼0,peak, and τθz,θ¼0,peak in place of the peak stresses
σθθ,θ= 0,peak, τrθ,θ= 0,peak, and τθz,θ= 0,peak, respectively.
Furthermore, Figure 2 highlights that (i) the PSM based
on tetrahedral elements cannot be applied at nodes lay-
ing on a free surface of the considered notched struc-
ture,49,50 since peak stress values at those nodes are
affected by the distorted mesh pattern; (ii) peak stresses
must be calculated only at vertex nodes of ten-node tetra-
hedral elements; that is, peak stresses existing at mid-side
nodes must be neglected. Previous item (i) implies that

FIGURE 2 FE model to apply the PSM according to Equations (4)–(6) to a partial-penetration tube-to-flange welded joint under

combined bending and torsion loading using ten-node tetrahedral elements. See also previous work35 [Colour figure can be viewed at

wileyonlinelibrary.com]
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the nearest node from a free surface where the peak
stress can be evaluated according to Equation (7) is the
third vertex node of the tetrahedral element mesh. If the
fatigue critical location is at the free surface, the PSM
prevent the FE analyst from evaluating the equivalent
peak stress exactly at the crack initiation point. As an
example, in the case of the tube-to-flange full-penetration
joint tested under bending loading by Sonsino (see previ-
ous works21,51 and Figure 2), a 7% difference was found
between the equivalent peak stress evaluated at the point
of crack initiation (by using one half of the model, not
reported in Figure 2) and at the third vertex node
(by using one fourth of the model according to Figure 2),
which was considered acceptable. Otherwise, the coarse
FE mesh according to the PSM must be locally refined to
place the third vertex node closer to the critical location.

The comparison between Equations (4)–(6) and previ-
ous Equations (1)–(3) shows that the PSM has a further
advantage in addition to the coarse FE mesh: only a sin-
gle linear-elastic peak stress evaluated at the singularity
location is necessary to estimate each NSIF-term, instead
of a number of stress versus distance results, which
require a post-processing analysis. Other methods52–56

are available in the literature to rapidly estimate the
NSIF-terms using coarse meshes. Lazzarin et al.53

suggested to take advantage of the averaged SED calcu-
lated by adopting coarse meshes inside a structural vol-
ume of radius R0. The need for the geometrical modeling
of the structural volume has been removed in very recent
contributions by Foti et al.,56 Campagnolo et al.,57 and
Zappalorto et al.54,55 in case of 2D problems. It is worth
noting that the values of K*

FE, K
**
FE, and K***

FE calibrated
under pure modes of loading using 2D four-node plane
elements, 3D eight-node brick elements, four-node as
well as ten-node tetrahedral elements of Ansys Mechani-
cal APDL element library have been successfully checked
also against mixed mode problems.58–61

Incidentally, thanks to Equations (4)–(6), any NSIF-
based approach for the structural strength assessment of
notched structures can in principle be reformulated on
the basis of the PSM. Recently, the PSM has been applied
in combination with the approach based on the averaged
SED to assess the fatigue strength of welded joints under
axial,46,62 torsion47 and multiaxial51,63 loading conditions.
More precisely, the PSM based on tetrahedral elements
has been adopted for the fatigue strength assessment of
large-scale and geometrically complex welded structures
taken from industrial case studies, for example a
roundabout-type carousel, a scotch-yoke valve actuator, a
suspension for cableway vehicles and a sluice gate. The
results have been reviewed in Ref.,64 where a very good
agreement has been observed between the PSM-based
results and those obtained by different approaches in

terms of estimated NSIF-parameters or averaged SED.
For additional details, the reader is referred to the recent
state-of-the-art reviews focused on NSIF,65 averaged
SED66,67 and PSM35 approaches.

To broaden the possibility of using the PSM with 3D
tetrahedral finite element models, it is of paramount
importance to calibrate the parameters K*

FE, K
**
FE, and

K***
FE for commercial FE packages other than Ansys.

Therefore, following the track of the previous Round
Robin48 focused on the 2D PSM, the present investigation
presents the results of a new Round Robin which has
been performed to determine K*

FE, K
**
FE, and K***

FE for
3D tetrahedral finite element models. To the best of
authors' knowledge, the 3D PSM based on tetrahedral
elements of FE codes other than Ansys has been adopted
only in a recent paper68, where the NSIFs resulting from
welding residual stresses have been rapidly estimated in
steel butt-welded joints using Sysweld.

The work plan of the present Round Robin consisted
in applying the PSM to several 3D V-notch problems
under pure mode I, pure mode II and pure mode III
loadings by adopting four-node or ten-node tetrahedral
elements available in different FE software packages.
After having evaluated the peak stresses from the FE
models and the average peak stresses according to
Equation (7), the non-dimensional parameters K*

FE,
K**

FE, and K***
FE have been calculated using Equa-

tions (4)–(6), but now rearranged in the following way:

K�
FE ffi

K1

σθθ,θ¼0,peak �d1�λ1
ð8Þ

K��
FE ffi

K2

τrθ,θ¼0,peak �d1�λ2
ð9Þ

K���
FE ffi K3

τθz,θ¼0,peak �d1�λ3
ð10Þ

For each numerical software package, the calibration
has been carried out by keeping fixed the following anal-
ysis conditions: (i) element type and integration scheme,
(ii) free mesh pattern, and (iii) procedure to extrapolate
stresses at nodes.

2 | CALIBRATING THE PSM WITH
3D TETRAHEDRAL ELEMENTS OF
ANSYS® MECHANICAL APDL FE
CODE

The PSM parameters K*
FE, K

**
FE, and K***

FE appearing in
Equations (4)–(6) have been calibrated using tetrahedral
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elements of Ansys Mechanical APDL in a previous
paper,50 which the reader is referred to. The obtained
values are recalled in next Table 4, as a function of the
loading mode, the element type and the notch opening
angle, while the conditions of applicability are summa-
rized in the following:

• the following tetrahedral elements of Ansys Mechani-
cal APDL element library have been calibrated:
� three-dimensional, four-node, linear tetrahedral

elements (SOLID 285);
� three-dimensional, ten-node, quadratic tetrahedral

elements (SOLID 187);
• Equations (4) and (6) can be adopted to analyze sharp

V-notches under mode I and III, respectively, having
an opening angle 0� ≤ 2α ≤ 135�. On the other hand,
Equation (5) can be applied to analyze the crack prob-
lem (2α = 0�) under mode II loading, while in a recent
paper35 it has been extended to treat also the case
2α = 90�, which is the typical case of a weld root with
a gap.

• the average size d of the tetrahedral elements defining
the free mesh pattern can be chosen within the range
of applicability reported in Table 4 in terms of
minimum mesh density ratio a/d, adopted element
type and notch opening angle. a represents the
characteristic size of the considered sharp notch, e.g. a
is the notch depth in Figure 3C; more precisely, a is
the minimum between the V-notch depth and the
ligament size (indicated as h in Figure 3). In the great
majority of the notch problems considered in the
present study, the characteristic size a corresponded
to the notch depth since a < h; however, few excep-
tions exist in Table 3 for which a > h; however, to
simplify the presentation of the results, a has been
always adopted to identify the notch depth also in
these cases.

• To apply the 3D PSM with Ansys Mechanical APDL
FE code, the “Full graphics” option must be activated
before evaluating the peak stresses in the post-
processing environment. Ansys Mechanical APDL FE
code adopts the “Power graphics” as the default option
since it offers faster plotting than the “Full graphics”
option. However, “Power graphics” option employs
only elements and nodes lying in the exterior surface
of the model to compute the results (both printed and
plotted), while “Full graphics” option employs all ele-
ments and nodes (both in the interior of the model and
in the surface). Therefore, the default “Power graphics”
option is less accurate and must be avoided when
applying the PSM.

3 | FE CODES AND PARTICIPANTS
INVOLVED IN THE ROUND ROBIN

Table 2 summarizes the seven FE software packages and
the eleven participants involved in the Round Robin. It is
worth noting that LS-Dyna and Optistruct have been
employed as solvers, while Hypermesh and Hyperview
have been adopted as pre-processor and post-processor
enviroments, respectively.

4 | GEOMETRIES, MATERIAL AND
FE MESH PATTERNS

Three-dimensional mode I, II and III notch problems
have been analyzed by adopting different FE codes. The
considered geometries include cracks as well as sharp V-
notches and not necessarily represent welded compo-
nents, due to the general validity of expressions 4–6 to be
calibrated. On one hand, geometries, material parame-
ters, element types, constraint and loading conditions
have been obviously kept the same in all FE software. On
the other hand, as far as possible, specific settings
relevant to element formulations, mesh generation algo-
rithms and procedures to extrapolate and to average
stress components at FE nodes have been set to default
options in each FE code. In the Discussion section, to
investigate the reasons for the different obtained results,
additional FE analyses of the following types have been
performed: (i) a FE software has been adopted enforcing
the default criterion regarding the stress extrapolation at
nodes of another FE code; (ii) the mesh pattern generated
by a given FE code has been imported into another code
in order to compare the results keeping the same FE
mesh pattern. All details relevant to the FE analyses car-
ried out and the post-processing of the results are
reported in the following. As a general setting for all ana-
lyses, linear elastic, static structural analyses have been
performed and a structural steel having Young's modulus
E = 206,000 MPa and Poisson's ratio ν = 0.3 has been
adopted.

4.1 | 3D problems (plane strain), mode I
loading, 2α = 0�, 90�, 120�, 135�

A number of 3D notch problems under pure mode I load-
ing as sketched in Figure 3A–D have been analyzed, all
geometries being the same treated in the original calibra-
tion of the PSM based on tetrahedral elements carried
out using Ansys Mechanical APDL code.50 More in detail,

6 MENEGHETTI ET AL.



FIGURE 3 Geometries of 3D problems under mode I (A–D), mode II (E) and mode III (F–H) loadings analyzed according to the PSM.

FE mesh patterns of tetrahedral elements, generated by using Ansys® mechanical APDL, and boundary conditions applied to the FE models.

Dimensions are in [mm]
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FIGURE 3 (Continued)
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the following case studies have been considered: a crack
(2α = 0�) at the tip of a U-notch (Figure 3A); a plate with
lateral cracks (2α = 0�) (Figure 3B); a plate with lateral
sharp V-notches (2α = 90�, 120�, 135�) (Figure 3C) and

the weld toe (2α = 135�) of a full-penetration cruciform
welded joint (Figure 3D).

Three-dimensional analyses have been performed by
adopting a mesh pattern of four-node or ten-node

TABLE 2 FE codes, list of participants and information on the adopted element types and related meshing options

Software UNI Version

TETRA 4 TETRA 10 Meshing options

Element

type

Gauss

points

Element

type

Gauss

points Mesh pattern Other

Ansys® Mechanical

APDL

UniBO 17.1 SOLID285 4 SOLID187 4 Free n.a.

UniGE 19 R2

UniPA 18.1

UniPD 2019 R1

UniPI 2019 R1

UniTN 17.2–18.1

Ansys® Mechanicala UniPD 2020 R2 SOLID185 1 SOLID187 4 Free n.a.

Dassault Systèmes®

Abaqus

UniSA

UniCampania

6.14–1 C3D4 1 C3D10 4 Free Equi triangle

UniPR 2019 Free Equi triangle

Lusas® UniMoRe V17 (edu) TH4 1 TH10 4 Free n.a.

Dassault Systèmes®

Solidworks

UniMoRe

UniMoRe &

UniPD

2018

2020

Draft 1 High 4 Standard

(quasi-mapped)

(a) Right

triangle

Blend (free) (b) Equi

triangle

Altair® Hypermesh/

LS-Dyna/Hyperview

PoliTO 2019(a)

R9(b)
EQ-10 1 EQ-17 4 Free n.a.

Altair® Hypermesh/

Optistruct/

Hyperview

UniGe 2019 EQ-10 1 EQ-17 4 Free n.a.

Note: (a) Altair® Hyperworks 2019 (Hypermesh/Hyperview) version; (b) LS-Dyna R9 version (2017). n.a. = not applicable.
aavailable within Ansys Workbench environment.
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tetrahedral elements, see the examples in Figure 3A–D,
which refer to Ansys Mechanical APDL code. The free
mesh generation algorithm available in each FE code has
been executed, after having set the desired FE size d. The
mesh density ratio a/d has been varied in the range
between 1 and 13, by considering several values of notch/
crack size a and element size d, as summarized in
Table 3. One eighth of each geometry has been modeled
by exploiting the triple symmetry condition; plane strain
conditions have been simulated by constraining the out-
of-plane displacement Uz according to Figure 3A–D,
resulting in εz = 0. A pure mode I axial load has been
applied to each FE model by means of a nominal gross-
section tensile stress equal to 1 MPa.

After solution of the FE analyses, the opening peak
stress σθθ,θ = 0,peak has been evaluated in the post-
processing environment of each FE code at vertex nodes
belonging to the crack or V-notch tip lines (see
Figure 3A–D). In all considered FE codes, stress averaging
at FE nodes has been activated, so that only a single value
of σθθ,θ = 0,peak has been obtained per node, that is, the
average of the nodal stresses from all elements sharing the
node. To do this, the default options of each FE software
have been employed, as it will be discussed in the next sec-
tions. After that, Equation (7) has been applied to calculate
the average peak stress σθθ,θ¼0,peak at each vertex node.

The exact values of the NSIF K1, to be employed in
Equation (8), have been computed by adopting Ansys
Mechanical APDL code and by applying Equation (1) to
the stress-distance results obtained from two-dimensional
FE analyses under plane strain conditions. Very refined
FE meshes of eight-node, quadratic quadrilateral ele-
ments (PLANE 183 of Ansys® element library), having
size of the order of 10�5 mm close to the notch tip, have
been employed.

4.2 | 3D problems (plane strain), mode II
loading, 2α = 0�

A crack (2α = 0�) centered in a plate (Figure 3E) has
been analyzed under pure mode II loading conditions,
the geometry being taken from the original calibration of
the PSM based on tetrahedral elements performed with
Ansys Mechanical APDL code.50

Three-dimensional analyses have been carried out by
using a free FE mesh of four-node or ten-node tetrahe-
dral elements, see the example of Figure 3E, which refers
to Ansys Mechanical APDL code. A mesh density ratio
a/d in the range from 1 to 25 has been adopted, as shown
in Table 3. Only one eighth of the cracked plate has been
modeled taking advantage of the double anti-symmetry
condition on planes YZ and XZ and of the symmetry

condition on plane XY (see Figure 3E). Pure mode II
shear loading has been applied to each FE model by
means of displacements Ux = Uy = 1.262�10�3 mm at the
plate free lateral surfaces, which correspond to a nominal
gross-section shear stress equal to 1 MPa in the
corresponding crack-free geometry.

After solution, the in-plane shear peak stress τrθ,θ = 0,

peak has been evaluated at vertex nodes belonging to the
crack tip line (Figure 3E), stress averaging at FE nodes
being activated as explained above when dealing with
mode I problems. Eventually, Equation (7) has been
employed to calculate the average peak stress τrθ,θ¼0,peak

at each vertex node.
Again, the exact values of the SIF K2, to be employed

in Equation (9), have been calculated by adopting Ansys
Mechanical APDL code and by applying Equation (2) to
the stress-distance results derived from two-dimensional
FE analyses with very refined FE meshes of eight-node,
quadratic quadrilateral elements (PLANE 183 of Ansys®

element library).

4.3 | 3D problems, mode III loading,
2α = 0�, 90�, 120�, 135�

Different 3D notch problems subjected to pure mode III
loading as sketched in Figure 3F–H have been analyzed.
All geometries are the same considered in the original
calibration of the PSM based on tetrahedral elements per-
formed using Ansys Mechanical APDL code50. The fol-
lowing case studies have been treated: a circumferential
crack (2α = 0�) or sharp V-notch (2α = 90�, 120�, 135�)
in a cylindrical bar (Figure 3F); a sharp V-notch
(2α = 90�, 120�, 135�) at a shaft shoulder (Figure 3F) and
the weld root (2α = 0�) in a geometry that recalls that of
a tube-to-tube welded joint (Figure 3H).

Three-dimensional analyses have been performed by
employing a free mesh pattern of either four-node or ten-
node tetrahedral elements, see the examples in
Figure 3F–H, referred to Ansys Mechanical APDL code.
The mesh density ratio a/d has been varied in the range
between 1 and 10, as summarized in Table 3. A 90� seg-
ment of each cylindrical geometry has been modeled tak-
ing advantage of the double anti-symmetry condition on
planes YZ and XY. Moreover, the anti-symmetry on plane
XZ as well has been also employed for the geometry of
Figure 3F; conversely, dealing with geometries of
Figure 3G,H, the free face on plane XZ has been fully
constrained. Finally, two tangential forces Fθ have been
applied at single nodes having X-Z coordinates (�Φ/2,0)
and (0,Φ/2) to generate a pure mode III torsion load,
translating into a nominal shear stress, referred to the
section having diameter Φ, equal to 1 MPa, except for the
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TABLE 3 FE analyses of 3D geometries under mode I, II, and III loadings

Mode I

Figure a [mm] d [mm] 2α [�] b [mm] t [mm] Number of analysesa

(3A) 1, 2, …, 9, 10 1 0 — — 10

(3B) 1, 2, …, 19, 20 1 0 — — 20

(3B) 10 2, 5, 10 0 — — 3

(3C) 5 1, 2, 2.5, 5 90 — — 4

(3C) 10 1, 2.5, 3, 5, 7.5 90 — — 5

(3C) 15 1, 2, 5 90, 120 — — 6

(3C) 5 1, 2, 2.5, 5 120 — — 4

(3C) 10 1, 2.5, 3, 5, 7.5 120 — — 5

(3C) 10 1, 2.5, 5, 10 135 — — 4

(3D) 6.5 0.5, 1, 1.5, 3, 6.5 135 10 8 5

(3D) 50 2, 5, 8, 10 135 50 16 4

Mode II

Figure a [mm] d [mm] 2α [�] b [mm] t [mm] Number of analysesb

(3E) 3 3 0 — — 1

(3E) 4 3, 4 0 — — 2

(3E) 5 3, 4, 5 0 — — 3

(3E) 6 3, 4, 6 0 — — 3

(3E) 7 3.5, 7 0 — — 2

(3E) 8 4, 6, 8 0 — — 3

(3E) 9 3, 4.5, 6 0 — — 3

(3E) 10 3, 5, 10 0 — — 3

(3E) 20 4, 5, 6, 10 0 — — 4

(3E) 30 3, 5, 7, 10 0 — — 4

(3E) 40 4, 5, 8, 10 0 — — 4

(3E) 50 3, 5, 10 0 — — 3

(3E) 60 3, 4, 5, 8, 10 0 — — 5

(3E) 70 3.5, 5, 10 0 — — 3

(3E) 80 4, 5, 8, 10 0 — — 4

(3E) 90 4.5, 5, 7.5, 10 0 — — 4

(3E) 100 4, 5, 8, 10 0 — — 4

Mode III

Figure a [mm] d [mm] 2α [�] Φ [mm] Isp [mm] Number of analysesc

(3F) 5 1, 2.5, 5 0, 90, 120, 135 50 — 12

(3F) 7 1, 3.5, 7 0, 90, 120, 135 50 — 12

(3F) 10 1, 2.5, 5 0, 90, 120, 135 50 — 12

(3G) 5 5 90, 120, 135 50 — 3

(3G) 10 5, 10 90, 120, 135 50 — 6

(3G) 15 5, 10 90, 120, 135 50 — 6

(3H) 2 2 0 50 4 1

(3H) 5 2.5, 5 0 50 10 2

(3H) 10 2.5, 5 0 50 20 2

aTotal number of analyses: 70 � 2 element types (TETRA 4 and TETRA 10) = 140 analyses.
bTotal number of analyses: 55 � 2 element types (TETRA 4 and TETRA 10) = 110 analyses.
cTotal number of analyses: 56 � 2 element types (TETRA 4 and TETRA 10) = 112 analyses.
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case of Figure 3H for which the applied forces translate
to a nominal shear stress equal to 1 MPa only in the case
a = 10 mm.

After solution, the out-of-plane shear peak stress
τθz,θ = 0,peak has been evaluated at vertex nodes belonging
to the crack or V-notch tip lines (Figure 3F–H), stress
averaging at FE nodes being activated as described for
mode I FE analyses. Then, Equation (7) has been used to
calculate the average peak stress τθz,θ¼0,peak at each
vertex node.

Again, the exact values of the NSIF K3, to input in
Equation (10), have been calculated by using Ansys
Mechanical APDL code and by applying Equation (3) to
the stress-distance results derived from two-dimensional
FE analyses with very refined FE meshes of eight-node,
quadratic quadrilateral harmonic elements (PLANE 83 of
Ansys® element library).

5 | DETAILS OF MESH
GENERATION SETTINGS

Three-dimensional free mesh patterns consisting of
four-node or ten-node tetrahedral elements have been
adopted in the FE analyses. Table 2 shows that the four-
node tetrahedral element has been integrated using
1 Gauss point, Ansys Mechanical APDL being the only
exception since it employs 4 Gauss points; on the other
hand, the ten-node tetrahedral element has been inte-
grated using 4 Gauss points by all considered FE codes.
To run the free mesh generation algorithm, first, the
proper element type has been selected, then, the sole
parameter, which the FE analyst has input, has been the
average element size d. More details regarding the
element type selection and the adopted mesh generation
settings in individual FE codes have been summarized in
Appendix A.

6 | RESULTS OF FE ANALYSES

Figures 4–6 report the results obtained from the partici-
pants in the Round Robin regarding the mode I, mode II,
and mode III notch problems, respectively. The results
are expressed in terms of the PSM parameters K*

FE, K
**
FE,

and K***
FE, defined by Equations (8)–(10), respectively, as

a function of the mesh density ratio a/d. It should be
noted that, the variability of the average peak stress
σij,peak along the notch or crack tip lines causes a non-
uniform distribution of coefficients K*

FE, K
**
FE and K***

FE

in each FE model. Therefore, Figures 4–6 report the
mean value of the non-dimensional parameters KFE eval-
uated from each FE model as well as the relevant bar,

which represents the range between maximum and mini-
mum KFE values evaluated along each notch or crack tip
line. In the case of the same FE code adopted by different
participants (see for example the number of users of
Ansys Mechanical APDL in Table 2), the mean value and
the bar of the ratios KFE reported in Figures 4–6 have
been calculated collecting together the numerical results
of all users. It is worth noting that the results generated
by the same FE code adopted by different users are inter-
esting for the present Round Robin, since the mesh pat-
tern generated for a given geometrical case could change
depending on the order of creation of the geometrical
entities or the performances of the adopted PC. More in
detail, if the mean values of the K*

FE parameter evaluated
from each FE model were calculated individually for dif-
ferent users adopting the same FE code, the differences
would be appreciable, being in most cases between 2%
and 10%, but achieving also 20% in 2 cases out of 70. Sim-
ilar results would be obtained for K**

FE and K***
FE, the

main factor generating these deviations being the order
of creation of the geometrical entities. Such differences
are taken into account by the bars of the ratios KFE

reported in Figures 4–6. Figures 4–6 show that, for a
given element type, the majority of the adopted FE soft-
ware present similar values of the non-dimensional
parameters K*

FE, K
**
FE, and K***

FE and of the minimum
mesh density ratio a/d for the applicability of the PSM.
More in detail, concerning 3D, four-node tetrahedral ele-
ments, Figures 4–6 highlight the following:

• Under mode I loading (see Figure 4), K*
FE is in the

range between 1.68 and 1.78 for all considered values
of the notch opening angle 2α, the deviation being
between ±18% and ±30%. Convergence is obtained
when a/d ≥ 1.

• Dealing with mode II loading (see Figure 5), K**
FE is in

the range between 2.63 and 3.00, the deviation being
between ±12% and ±18%, and convergence is obtained
when the ratio a/d ≥ 3.

• Concerning mode III loading, the obtained results are
reported in Figure 6, which shows that K***

FE is in the
range between 2.35 and 2.60, the deviation being
between ±15% and ±23%, and convergence is obtained
when the ratio a/d ≥ 5.

Dealing with 3D,
ten
-node tetrahedral elements, Figures 4–6 highlight the

following:

• Under mode I loading, Figure 4 show that K*
FE is in

the range between 1.05 and 1.07, with a deviation
between ±15% and ±23%, for 2α equal to 0�, 90�, or

12 MENEGHETTI ET AL.



FIGURE 4 Results of Round Robin for mode I loading: Non-dimensional parameter K*
FE for all considered FE codes

MENEGHETTI ET AL. 13



FIGURE 4 (Continued)
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120�. K*
FE is in the range between 1.20 and 1.21, with a

deviation between ±8% and ±12%, when 2α equals
135�. The only exceptions are FE packages Hyperm-
esh/LS-Dyna/Hyperview and Hypermesh/Optistruct/
Hyperview which present K*

FE = 1.84 ± 24% and 1.80
± 22%, respectively, for all considered values of the
notch opening angle 2α. Convergence is obtained
when a/d ≥ 1 for all cases.

• Concerning mode II loading (see Figure 5), K**
FE is in

the range between 1.61 and 1.63, with a deviation
between ±13% and ±20%, while convergence is
obtained for a ratio a/d ≥ 1. Again, the only exceptions
are Hypermesh/LS-Dyna/Hyperview and Hypermesh/
Optistruct/Hyperview which present a K**

FE = 2.70
± 18% and 2.87 ± 15% and convergence is obtained
when a/d ≥ 3.

FIGURE 5 Results of Round Robin for mode II loading: Non-dimensional parameter K**
FE for all considered FE codes
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• Dealing with mode III loading, Figure 6 show that
K***

FE is in the range between 1.32 and 1.40, with a
deviation between ±10% and ±15%, for 2α equal to 0�

and 90�, convergence being obtained for a ratio
a/d ≥ 3, the only exception being Abaqus for which it
must be a/d ≥ 5. On the other hand, K***

FE is in the
range between 1.60 and 1.70, with a deviation between
±10% and ±12%, when 2α equals 120� or 135�, conver-
gence being obtained for a ratio a/d ≥ 1, the only
exception being again Abaqus for which it must be
a/d ≥ 4. Once again, Hypermesh/LS-Dyna/Hyperview
and Hypermesh/Optistruct/Hyperview present differ-
ent values of the PSM parameters, namely,
K***

FE = 2.45 ± 15% for a/d ≥ 3 and K***
FE = 2.50

± 18% for a/d ≥ 1, respectively, for all considered
values of the notch opening angle 2α.

Table 4 summarizes all results showed in Figures 4–6,
that is, the non-dimensional ratios K*

FE, K**
FE, and

K***
FE to input in Equations (4)–(6) and the minimum

mesh density ratio a/d for individual FE software
packages.

Importantly, the PSM parameters K*
FE, K**

FE, and
K***

FE reported here using Ansys Mechanical APDL are
slightly different results as compared to the original cali-
bration,50 as it can be observed from Table 4. In fact, the
mean values of the parameters KFE have been slightly
modified and a little greater deviation has to be accepted
to take into account the distribution of the results
obtained by all users of Ansys Mechanical APDL, due to
the different mesh pattern generated for a given geome-
try; on the other hand, the minimum mesh density ratio
a/d to achieve convergence has been reduced. See for
example the case of mode I notch problems treated with
four-node tetrahedral elements: the original calibration50

provided K*
FE = 1.75 ± 22% for a/d ≥ 3, while the pre-

sent calibration provides K*
FE = 1.70 ± 30% for a/d ≥ 1.

However, the scatter obtained for Ansys Mechanical
APDL would be in agreement with that obtained here
with other FE software packages, if Ansys results were

FIGURE 5 (Continued)
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taken only from the calibration performed by a
single user.

Figures 4–6 show that the calibration of the K*
FE,

K**
FE, and K***

FE performed using Solidworks provides

different results as a function of the adopted mesh gener-
ation option, that is, standard or blend. More in detail,
results generated using standard mesh are highly
scattered, especially for mode II crack problems (see

FIGURE 6 Results of Round Robin for mode III loading: Non-dimensional parameter K***
FE for all considered FE codes
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Figure 5), while results obtained using a blend mesh are
consistent with those generated by the other FE codes.
This is due to the generated mesh pattern, which is
quasi-mapped, consisting of right triangles on the free

surface of the component, for the standard mesh, while it
is free, that is, made of nearly equilateral triangles, when
using the blend mesh, as sketched in Table 2. Accord-
ingly, the scatter bands reported in Figures 4–6 and the

FIGURE 6 (Continued)
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results summarized in Table 4 relevant to Solidworks
have been referred only to the blend mesh, which is con-
sistent with the mesh patterns generated by the other FE
codes, which typically define a free mesh pattern of pre-
dominantly equilateral triangles.

Concerning the minimum mesh density ratios, since
the PSM relies on the asymptotic stress distribution quan-
tified by the NSIFs, therefore, the greater the extension of
the asymptotic stress field starting from the notch tip, the
larger the mesh size can be. As an example, in
Campagnolo et al.,57 it was shown that the more refined
FE meshes required by mode III stresses as compared to
mode I stresses were due to the smaller extension of the
asymptotic stress field under mode III. Moreover, ten-
node tetrahedral elements are more accurate, owing to
the higher number of nodes and Gauss points as com-
pared to four-node tetrahedral elements, therefore
coarser meshes can be adopted, that is, lower mesh den-
sity ratios a/d.

Finally, the different calibration constants obtained
using Hypermesh/LS-Dyna/Hyperview and Hypermesh/
Optistruct/Hyperview, depend on criteria for stress
extrapolation at FE nodes and will be discussed in the fol-
lowing section.

7 | DISCUSSION

In previous section, some differences have been observed
among the results provided by the adopted FE software
packages. The most significant one is highlighted by
Figures 4–6 and Table 4 and is that Hypermesh/LS-
Dyna/Hyperview and Hypermesh/Optistruct/Hyperview
deliver K*

FE, K
**
FE, and K***

FE values calculated with ten-
node tetrahedral elements completely different from
those found with all other FE codes. Other minor differ-
ences of PSM coefficients provided by the other FE codes

have also been observed. Such discrepancies have been
motivated on the basis of the different criteria adopted to
extrapolate stresses at FE nodes, of the generated mesh
patterns and of the finite element formulations, as
reported in more detail in the following sections.

7.1 | Stress extrapolation at FE nodes

Numerical results are calculated by FE software at the
Gauss (or integration) points of each finite element.
Then, results can be evaluated at nodal or centroidal
locations by employing the relevant shape functions. The
stress component can be calculated at a node shared by
different elements by adopting two criteria, as reported in
Figure 7 referred to a node shared by two elements69,70:

a. The nodal stresses in the element (σij,k
(I) and σij,k

(II) in
Figure 7A) are derived by extrapolating the stresses
existing at the Gauss points. Then, the nodal stresses
per element are averaged to compute the stress com-
ponent at the node (σij,k in Figure 7A):

σij,k ¼ σij,k Ið Þ þσij,k IIð Þ

2
or in the general case σij,k

¼
PN

n¼1
σij,k nð Þ

N
where N ¼FEs sharing node k ð11Þ

b. The centroidal stresses in the element (σij,c
(I) and

σij,c
(II) in Figure 7B) are derived by interpolating the

stresses existing at the Gauss points and, then, they
are attributed to the shared node. Afterwards, they are
averaged to compute the stress component at the
shared node (σij,k in Figure 7B):

FIGURE 7 Stress

extrapolation at FE nodes based

on (A) nodal stresses or

(B) centroidal stresses. See also

previous work48 [Colour figure

can be viewed at

wileyonlinelibrary.com]
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σij,k ¼ σij,c Ið Þ þσij,c IIð Þ

2
or in the general case σij,k

¼
PN

n¼1
σij,c nð Þ

N
where N ¼FEs sharing node k ð12Þ

The procedure sketched in Figure 7A and defined in
Equation (11) is applied by the great majority of the
adopted FE codes, that is, Ansys, Abaqus, Lusas, and
Solidworks. On the other hand, the postprocessor Hyper-
view allows to apply either Equation (11) or
Equation (12); however, both solvers LS-Dyna and
Optistruct do not compute nodal stresses in the element,
therefore Hyperview can apply only procedure of
Figure 7B and Equation (12) for stress extrapolation at
nodes. This explains why the PSM parameters K*

FE,
K**

FE, and K***
FE delivered by LS-Dyna and Optistruct are

different from those derived using the other FE software
packages, as highlighted in Figures 4–6 and in Table 4.
This conclusion has been validated by recalibrating the
coefficients K*

FE, K
**
FE, and K***

FE using Ansys Mechani-
cal APDL FE code, but enforcing the use of Equation (12)
to extrapolate stresses at FE nodes. The obtained results
are reported in Figure 8, which includes also the results
previously generated by LS-Dyna and Optistruct
(Figures 4–6) and the scatter bands calibrated on LS-dyna
results. Figure 8 shows that enforcing Equation (12),
Ansys Mechanical APDL FE software provides KFE values
consistent with those obtained using Hypermesh/LS-
Dyna/Hyperview and Hypermesh/Optistruct/Hyperview.

7.2 | Principal stress averaging

When considering a pure opening (mode I) notch prob-
lem, the PSM can be applied through Equation 4 by
adopting the maximum principal stress σ11,peak, which is
approximately equal to the opening peak stress σθθ,θ = 0,

peak but easier to evaluate, because it does not require a
properly aligned cylindrical coordinate system.

Starting from the nodal stress tensors per element
calculated with any criterion mentioned previously
(Equation 11 or Equation 12), the principal stresses at a
node shared by different finite elements can be evaluated
according to two averaging procedures, as sketched in
Figure 9 for a node shared by two elements:

a. The nodal stress tensors per element ([σ]k
(I) and

[σ]k
(II) in Figure 9A) are averaged at the share node

([σ]k in Figure 9A). Then, the nodal principal stress is
evaluated (σ11,k in Figure 9A).

b. The nodal principal stress per element (σ11,k
(I) and

σ11,k
(II) in Figure 9B) is calculated from the relevant

nodal stress tensors per element ([σ]k
(I) and [σ]k

(II) in
Figure 9B). Afterwards, nodal principal stress (σ11,k in
Figure 9B) is obtained by averaging the nodal princi-
pal stresses per element at the shared node (σ11,k in
Figure 9B).

Table 5 summarizes the nomenclature, where available,
used by each FE software to define procedures (a) and
(b) for principal stress averaging, according to Figure 9.
The table reports also the default option adopted by indi-
vidual FE codes and it is seen that option (a) is the
default for Ansys, Lusas and Solidworks, while option
(b) is the default for Abaqus and the post-processor
Hyperview.

To investigate the effects of options (a) and (b) on
K*

FE value to be adopted in Equation (4), the mode I
problems of Figure 3A–D have been re-analyzed with
Ansys Mechanical APDL FE code, but now calculating
the maximum principal stress σ11,peak, using either option
(a) or (b) of Figure 9, instead of the opening peak stress
σθθ,θ = 0,peak. The obtained results are reported in
Figure 9C–F, which show that the mean values of K*

FE

are all inside the scatter bands previously calibrated using
the opening peak stress σθθ,θ = 0,peak (Figure 4), regardless
the procedure adopted for principal stress averaging.
However, Figure 9C–F show that when using procedure
(b), the resulting K*

FE values are on average well below
the mean value of K*

FE reported in Figure 4.

7.3 | FE mesh pattern

When analyzing a given geometry with the same average
element size d, the FE software packages generate differ-
ent FE mesh patterns.

The influence of different FE meshes has been ana-
lyzed by considering as case study the mode I problem of
Figure 3D, that is, a full-penetration cruciform welded
joint under axial loading, having thickness 2a = 13 mm,
notch opening angle at the weld toe 2α = 135� and global
element size d = 3 mm. The mesh patterns generated by
all considered FE codes are reported in Figure 10A–G.
Discrepancies in the mesh patterns can be noted from
visual inspection of Figure 10A–G; therefore, a more
detailed analysis has been performed to allow a quantita-
tive comparison. Figure 10H reports the number of finite
elements that share each vertex node belonging to the
weld toe line and show that it is highly scattered, being
in the range between 6 (at free surface) and 24, and it has
a different trend for different mesh patterns. Figure 10I
reports the size of finite elements, that is, the length of
the tetrahedron edges, that share each vertex node
belonging to the weld toe line. The figure reports the
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mean size of the elements along with the relevant bar,
which represents the range between maximum and mini-
mum sizes evaluated at each node. Figure 10I shows that
the average element size closely matches the nominal

one for Ansys and Abaqus, while it is always larger for
Lusas, LS-dyna and Optistruct and always smaller for
Solidworks. Moreover, the element size has a strong vari-
ability in the range between 0.55�dnom and 1.85�dnom.

FIGURE 8 Non-dimensional parameters K*
FE, K

**
FE, and K***

FE for Ansys® Mechanical APDL and for Altair® Hypermesh/LS-Dyna/

Hyperview and Hypermesh/Optistruct/Hyperview FE packages. Results for mode I, II and III loadings based on centroidal stresses

(according to Figure 7B). The scatter bands have previously been calibrated in Figures 4–6 on LS-dyna results [Colour figure can be viewed

at wileyonlinelibrary.com]
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The great differences in the mesh patterns highlighted
in Figure 10H,I, only slightly affect the peak stress distri-
butions. Indeed, Figure 10L,M shows that the mesh pat-
terns of four-node and ten-node tetrahedral elements
provide an opening peak stress in the range 0.944–1.197

and 1.417–1.763 MPa, respectively, when considering FE
codes which apply Equation (11) to extrapolate stresses at
nodes. Despite the strong variability of both the number
of finite elements sharing a node and the finite element
size above mentioned, the effects on the peak stress

FIGURE 9 Principal stress averaging options. (A) Principal stresses from average stress tensor. (B) Principal stresses from element

principal stresses. Non-dimensional parameter K*
FE for Ansys® mechanical APDL. Results for mode I loading obtained by adopting principal

stress averaging option (a) in (C), (D) and option (b) in (E), (F). The scatter bands have previously been calibrated in Figure 4 using the

opening peak stress σθθ,θ = 0,peak [Colour figure can be viewed at wileyonlinelibrary.com]
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distribution are reduced and are demonstrated by the rel-
atively reduced deviations of the KFE parameters in the
range between ±8% and ±30%.

7.4 | Finite element formulation

All FE codes involved in the present Round Robin inte-
grate four-node and ten-node tetrahedral elements by
using 1 and 4 Gauss points, respectively, Ansys Mechani-
cal APDL being the only exception since it adopts 4 Gauss
points also for the four-node tetrahedral element, as
reported in Table 2.

To analyze the effect of different finite element for-
mulations, the 3D mode I problem of the full-penetration
cruciform welded joint reported in Figure 3D has been
taken again as a case study. The effect of the FE mesh
has been excluded by generating two mesh patterns,
one using four-node tetrahedral and the other using
ten-node tetrahedral elements, and adopting in both
cases the free mesh generation algorithm available in
Solidworks with blend option activated (see Figure 10E).

FIGURE 10 FE mesh patterns relevant to the case of Figure 3D with 2a = 13 mm, 2α = 135�, and d = 3 mm, as obtained with:

(A) Ansys Mechanical APDL, (B) Ansys Mechanical, (C) Abaqus, (D) Lusas, (E) Solidworks, (F) Hypermesh/LS-Dyna/Hyperview, and

(G) Hypermesh/Optistruct/Hyperview. (H) Number of finite elements that share each vertex node at the weld toe. (I) Normalized size of

finite elements that share each vertex node at the weld toe. Comparison of peak stress distributions calculated by all considered FE codes

along the weld toe line of the FE models reported in (A)–(G) using (L) four-node and (M) ten-node tetrahedral elements [Colour figure can

be viewed at wileyonlinelibrary.com]

TABLE 5 Options for principal stress averaging available in

the considered FE codes

FE software
Averaging option
(a) of Figure 9

Averaging option
(b) of Figure 9

Ansys®

Mechanical
APDL

AVPRIN,0 or “from
components”
(default)

AVPRIN,1 or “from
principals”

Ansys®

Mechanical
default not available

Dassault
Systèmes®

Abaqus

“compute scalars
after averaging”

“compute scalars
before averaging”
(default)

Lusas® Averaged nodal
(default)

not available

Dassault
Systèmes®

Solidworks

default not available

Altair®

Hypermesh/
Hyperviewa

Averaging method:
“Advanced”

Averaging method:
“Simple” (default)

aPost-processor adopted to calibrate both Altair® LS-Dyna and Altair®

Optistruct.
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Afterwards, the mesh patterns have been imported into
all other FE codes to keep identical FE meshes in all
analyses.

The obtained results in terms of opening peak stress
σθθ,θ = 0,peak, evaluated at the vertex nodes belonging to
the weld toe line (z direction in Figure 10E), are reported
in Figure 11A,B for four-node and ten-node tetrahedral
elements, respectively. Figure 11A shows that the peak
stress values are perfectly matching for all FE codes,
which adopt 1 Gauss point to integrate the four-node

tetrahedral element, even for LS-Dyna and Optistruct,
since the centroid coincides with the sole Gauss point.
On the other hand, Ansys Mechanical APDL, which
adopts 4 Gauss points, delivers different results and on
average slightly higher than those calculated by the other
FE codes. Figure 11B illustrates a perfect match of the
ten-node tetrahedral elements available in all FE codes
involved in the present Round Robin, with the only
exceptions of LS-Dyna and Optistruct, as it was expected
since all codes adopt 4 Gauss points. Moreover,

FIGURE 11 Comparison of peak stress distributions calculated by all considered FE codes along the weld toe line of the FE mesh

pattern relevant to the case of Figure 3D with 2a = 13 mm, 2α = 135�, and d = 3 mm, as generated by Solidworks (see Figure 10E) adopting

(A) four-node and (B) ten-node tetrahedral elements, respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 11B confirms once again that Ansys Mechanical
APDL, when Equation (12) is enforced to extrapolate
stresses at FE nodes, provides results coincident with
those generated by LS-Dyna and Optistruct, provided that
also the mesh pattern and the element formulation are
kept the same.

8 | CONCLUSIONS

A Round Robin activity has been performed to calibrate
the PSM adopting different FE software packages for a
range of coarse three-dimensional FE meshes. The PSM
is an engineering, numerical tool originally calibrated
using Ansys Mechanical APDL FE code to evaluate rap-
idly the mode I, II and III linear elastic Notch Stress
Intensity Factors (NSIFs); to this aim, the PSM employs
the linear elastic opening, in-plane shear and out-of-
plane shear peak stresses, respectively, evaluated at the
sharp V-notch tip. Three non-dimensional parameters
are required to apply the PSM, namely, K*

FE

(Equation 4), K**
FE (Equation 5), and K***

FE (Equation 6),
which have been calibrated here adopting four-node and
ten-node tetrahedral finite elements available in commer-
cial FE codes, namely Ansys Mechanical APDL, Ansys
Mechanical, Abaqus, Lusas, Solidworks, Hypermesh/LS-
Dyna/Hyperview, and Hypermesh/Optistruct/Hyperview.
All in all, 362 3D FE analyses have been performed for
each of the 16 different combinations of FE codes and
participants, resulting in 5792 total number of analyses
performed. The following conclusions can be drawn:

• The PSM parameters K*
FE, K

**
FE, and K***

FE and the
minimum mesh density ratios a/d to guarantee their
convergence within a given scatter, result to be depen-
dent on the FE code, element type, notch opening
angle and procedure to calculate stresses at FE nodes.

• The main sources of discrepancy among the PSM
parameters calculated with the different FE codes are
(i) the different methods adopted to extrapolate
stresses at FE nodes according to Equation (11) or (12);
(ii) the different mesh pattern generated, in terms of
number of elements sharing a node and actual finite
element size for the same input size given by the FE
analyst.

• Additional differences among the considered FE soft-
ware packages, which affects the results to some
extent, include (i) the finite element formulation, in
terms of number of Gauss points and (ii) the numerical
procedure adopted for principal stress averaging at FE
nodes, which is relevant in some particular cases illus-
trated in the paper. However, the effects of such

differences are taken up by the scatter bands defined
for the PSM parameters.

• 3D mesh patterns being coarse and post-processing the
evaluated peak stresses being rather rapid and simple,
the 3D PSM based on tetrahedral elements seems use-
ful for engineers involved in structural FE analyses of
components weakened by sharp V-shaped notches,
even when large-scale and geometrically complex
structures are investigated.
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NOMENCLATURE
a characteristic dimension of a sharp V-

notch, that is, the minimum between the
notch depth and the ligament size

d element size of a coarse mesh pattern to
apply the peak stress method (PSM)

E material Young's modulus
K1, K2, K3 notch stress intensity factors (NSIFs) rele-

vant to mode I, II, and III loadings
K�

FE, K��
FE,

K���
FE

non-dimensional parameters to estimate
K1, K2, and K3 by using the peak stress
method (PSM)

r, θ, z cylindrical coordinates
Ur, Uθ, Uz displacement components in the cylindrical

coordinate system
Ux, Uy, Uz displacement components in the Cartesian

coordinate system
x, y, z Cartesian coordinates
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SYMBOLS
2α opening angle of the considered sharp V-

notch
λ1, λ2, λ3 stress singularity degrees relevant to mode I,

II, and III loadings
ν material Poisson's ratio
σ11,peak singular, linear elastic, maximum principal

stress computed at the sharp V-notch tip by
FE analysis according to the PSM

σij,c
(I) centroidal stress component, where I = finite

element number
σij,k

(I) nodal stress component, where k = node
number, I = finite element number

σij,k nodal stress component, where k = node
number

σij,peak moving average of the peak stresses com-
puted on three adjacent vertex nodes of a FE
mesh consisting of tetrahedral elements

σrr, σθθ,
τrθ

normal and in-plane shear stress components
in a cylindrical reference system

σθθ,θ = 0,

peak

singular, linear elastic, opening (mode I)
peak stress computed at the sharp V-notch
tip by FE analysis according to the PSM

τrθ,θ = 0,

peak

singular, linear elastic, in-plane shear (mode
II) peak stress computed at the sharp V-notch
tip by FE analysis according to the PSM

τrz, τθz out-of-plane shear stress components in a
cylindrical reference system

τθz,θ = 0,

peak

singular, linear elastic, anti-plane shear
(mode III) peak stress computed at the sharp
V-notch tip by FE analysis according to the
PSM

[σ]k
(I) nodal stress tensor, where k = node number,

I = finite element number
[σ]k stress tensor, where k = node number

ABBREVIATIONS
FEM Finite element method
LEFM Linear elastic fracture mechanics
NSIF Notch stress intensity factor
PSM Peak stress method
SED Strain energy density
SIF Stress intensity factor
TCD Theory of critical distances
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APPENDIX A

DETAILS OF MESH GENERATION SETTINGS
Details relevant to element type and settings to generate
a free 3D FE mesh are reported in the following for each
FE code:

• Ansys® Mechanical APDL

Element type: Solid ! Tet 4-node (SOLID 285) or Tet
10-node (SOLID 187).

Element options: not applicable.
Element size: Size Cntrls ! Manual Size ! Global !

Size = d.
Mesh generation: Mesh ! Volumes ! Free

• Ansys® Mechanical

Element type: Tet4 (SOLID 185) or Tet10 (SOLID
187).

Element options: not applicable.
Element size: Mesh ! Insert ! Sizing !

Type = Element Size ! Element Size = d.
Mesh generation: Mesh ! Insert ! Method !

Method = Tetrahedrons ! Element Order = Linear (for
Tet4) or Quadratic (for Tet10); Mesh ! Sizing ! Use
Adaptive Sizing = No ! Mesh Defeaturing = No; Mesh
! Generate Mesh
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• Dassault Systèmes® Abaqus

Element type: Tet C3D4 or C3D10.
Element options: not applicable.
Element size: Global Seeds ! Sizing Cntrls !

Approximate global size = d.
Mesh generation: Mesh Cntrls ! Tet ! Free ! Use

default algorithm ! “Use mapped tri meshing on
bounding faces where appropriate” MUST BE INAC-
TIVE; Mesh Part Instance ! Ok

• Lusas®

Element type: 3D isoparametric tetrahedra solid con-
tinuum element with higher order models capable of
modeling curved boundaries (TH4).

Element options: 4 (TH4) or 10 (TH10) nodes.
Element size: Mesh ! Volume Mesh ! Irregular

mesh ! Element size = d.
Mesh generation: Mesh ! Volume Mesh

• Dassault Systèmes® Solidworks

Element type: First-order tetrahedral (Draft quality)
or Second-order tetrahedral (High quality).

Element options: not applicable.
Element Size and Mesh generation: Mesh ! Create

Mesh ! Definition ! Mesh Parameters: Blended

curvature-based mesh; Maximum element
size = Minimum element size = d; Mesh Quality !
Specify: Draft or High ! OK

• Altair® Hypermesh/LS-Dyna/Hyperview

Element type: Tetrahedral 4 nodes Elform 10, tetrahe-
dral 10 nodes Elform 17 (LS-Dyna).

Element options: not applicable.
Element size: 2D ! Automesh ! Surfs ! Size and

bias ! Element size = d (Hypermesh).
Mesh generation: 2D ! Automesh ! Surfs ! Size

and bias ! Mesh type ! trias; mesh !
3D ! Tetramesh ! Tetrahedral mesh ! Fixed trias/
quads to tetrahedral mesh; mesh (Hypermesh)

• Altair® Hypermesh/Optistruct/Hyperview

Element type: CTETRAHEDRAL (Hypermesh).
Element options: not applicable, default tetrahedral

formulation (Optistruct).
Element size: 3D ! Tetramesh ! Element size = d

(Hypermesh).
Mesh generation: 3D ! Tetramesh ! Volume tetra-

hedral ! 3D type: tetras; element order: first/second
(Hypermesh).
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